xwb*_*989 3 python algorithm python-2.7
我正在阅读算法导论,并尝试完成本书中的练习.
在练习4.1-3中
4.1-3在您自己的计算机上实现最大子阵列问题的强力算法和递归算法.问题大小n0给出了递归算法胜过强力算法的交叉点?然后,每当问题大小小于n0时,更改递归算法的基本情况以使用强力算法.这会改变交叉点吗?
我根据本书的伪代码编写了两种算法.但是,我的代码肯定有问题,因为第二个,设计为Theta(n*lgn)并且应该运行得更快,总是比第一个Theta(n**2)运行得慢.我的代码如下所示.
def find_maximum_subarray_bf(a): #bf for brute force
p1 = 0
l = 0 # l for left
r = 0 # r for right
max_sum = 0
for p1 in range(len(a)-1):
sub_sum = 0
for p2 in range(p1, len(a)):
sub_sum += a[p2]
if sub_sum > max_sum:
max_sum = sub_sum
l = p1
r = p2
return l, r, max_sum
def find_maximum_subarray_dc(a): #dc for divide and conquer
# subfunction
# given an arrary and three indics which can split the array into a[l:m]
# and a[m+1:r], find out a subarray a[i:j] where l \leq i \less m \less j \leq r".
# according to the definition above, the target subarray must
# be combined by two subarray, a[i:m] and a[m+1:j]
# Growing Rate: theta(n)
def find_crossing_max(a, l, r, m):
# left side
# ls_r and ls_l indicate the right and left bound of the left subarray.
# l_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
ls_l = 0
ls_r = m-1
l_max_sum = None
sub_sum = 0
for j in range(m+1)[::-1]: # adding elements from right to left
sub_sum += a[j]
if sub_sum > l_max_sum:
l_max_sum = sub_sum
ls_l = j
# right side
# rs_r and rs_l indicate the right and left bound of the left subarray.
# r_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
rs_l = m+1
rs_r = 0
r_max_sum = None
sub_sum = 0
for j in range(m+1,len(a)):
sub_sum += a[j]
if sub_sum > r_max_sum:
r_max_sum = sub_sum
rs_r = j
#combine
return (ls_l, rs_r, l_max_sum+r_max_sum)
# subfunction
# Growing Rate: should be theta(nlgn), but there is something wrong
def recursion(a,l,r): # T(n)
if r == l:
return (l,r,a[l])
else:
m = (l+r)//2 # theta(1)
left = recursion(a,l,m) # T(n/2)
right = recursion(a,m+1,r) # T(n/2)
crossing = find_crossing_max(a,l,r,m) # theta(n)
if left[2]>=right[2] and left[2]>=crossing[2]:
return left
elif right[2]>=left[2] and right[2]>=crossing[2]:
return right
else:
return crossing
#back to master function
l = 0
r = len(a)-1
return recursion(a,l,r)
if __name__ == "__main__":
from time import time
a = [100,-10,1,2,-1,4,-6,2,5]
a *= 2**10
time0 = time()
find_maximum_subarray_bf(a)
time1 = time()
find_maximum_subarray_dc(a)
time2 = time()
print "function 1:", time1-time0
print "function 2:", time2-time1
print "ratio:", (time1-time0)/(time2-time1)
首先,蛮力的错误:
for p1 in range(len(a)-1):
Run Code Online (Sandbox Code Playgroud)
应该是range(len(a))[或xrange],因为它不会找到最大的子阵列[-12,10].
现在,递归:
def find_crossing_max(a, l, r, m):
# left side
# ls_r and ls_l indicate the right and left bound of the left subarray.
# l_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
ls_l = 0
ls_r = m-1
l_max_sum = None
sub_sum = 0
for j in range(m+1)[::-1]: # adding elements from right to left
Run Code Online (Sandbox Code Playgroud)
您正在检查所有索引为0,但您应该只检查索引l.使用,而不是构建range列表并将其反转xrange(m,l-1,-1)
sub_sum += a[j]
if sub_sum > l_max_sum:
l_max_sum = sub_sum
ls_l = j
Run Code Online (Sandbox Code Playgroud)
对于右边的总和,模拟成立,你应该只检查索引r,所以xrange(m+1,r+1).
此外,您的总和的初始值resp.最大子阵列的索引对于左侧部分是可疑的,而对于右侧则是错误的.
对于左边部分,我们从一个空的开头开始,但必须包括a[m].这可以通过l_max_sum = None最初设置,或通过设置l_max_sum = a[m]和j省略索引来完成m.无论哪种方式,初始值ls_l不应该是0,并且ls_r不应该是m-1.ls_r必须m和ls_l应该开始为m+1因为如果初始值l_max_sum是None,并且m如果l_max_sum开始的a[m].
对于正确的部分,r_max_sum必须从0开始,并且rs_r应该更好地开始m(虽然这不是很重要,它只会给你错误的索引).如果右边的总和都不是非负的,那么正确的总和应该是0而不是最大的负数.
在recursion,我们有一些重复
left = recursion(a,l,m) # T(n/2)
Run Code Online (Sandbox Code Playgroud)
包括a[m]已经处理或主要的金额find_crossing_max,所以可能
left = recursion(a,l,m-1)
Run Code Online (Sandbox Code Playgroud)
不过这样人们就不得不也可治疗的可能性r < l中recursion,和重复小,所以我就让那个立场.
由于你总是遍历整个列表find_crossing_max,这就是所谓的O(n)时间,你的分而治之的实现实际上O(n²)也是如此.
如果选中的范围find_crossing_max被限制[l,r],因为它应该是,你有(大约)2^k对长度的范围要求n/2^k,0 <= k <= log_2 n为的总成本O(n*log n).
通过这些更改(以及一些随机数组生成),
def find_maximum_subarray_bf(a): #bf for brute force
p1 = 0
l = 0 # l for left
r = 0 # r for right
max_sum = 0
for p1 in xrange(len(a)):
sub_sum = 0
for p2 in xrange(p1, len(a)):
sub_sum += a[p2]
if sub_sum > max_sum:
max_sum = sub_sum
l = p1
r = p2
return l, r, max_sum
def find_maximum_subarray_dc(a): #dc for divide and conquer
# subfunction
# given an arrary and three indices which can split the array into a[l:m]
# and a[m+1:r], find out a subarray a[i:j] where l \leq i \less m \less j \leq r".
# according to the definition above, the target subarray must
# be combined by two subarray, a[i:m] and a[m+1:j]
# Growing Rate: theta(n)
def find_crossing_max(a, l, r, m):
# left side
# ls_r and ls_l indicate the right and left bound of the left subarray.
# l_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
ls_l = m+1
ls_r = m
l_max_sum = None
sub_sum = 0
for j in xrange(m,l-1,-1): # adding elements from right to left
sub_sum += a[j]
if sub_sum > l_max_sum:
l_max_sum = sub_sum
ls_l = j
# right side
# rs_r and rs_l indicate the right and left bound of the left subarray.
# r_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
rs_l = m+1
rs_r = m
r_max_sum = 0
sub_sum = 0
for j in range(m+1,r+1):
sub_sum += a[j]
if sub_sum > r_max_sum:
r_max_sum = sub_sum
rs_r = j
#combine
return (ls_l, rs_r, l_max_sum+r_max_sum)
# subfunction
# Growing Rate: theta(nlgn)
def recursion(a,l,r): # T(n)
if r == l:
return (l,r,a[l])
else:
m = (l+r)//2 # theta(1)
left = recursion(a,l,m) # T(n/2)
right = recursion(a,m+1,r) # T(n/2)
crossing = find_crossing_max(a,l,r,m) # theta(r-l+1)
if left[2]>=right[2] and left[2]>=crossing[2]:
return left
elif right[2]>=left[2] and right[2]>=crossing[2]:
return right
else:
return crossing
#back to master function
l = 0
r = len(a)-1
return recursion(a,l,r)
if __name__ == "__main__":
from time import time
from sys import argv
from random import randint
alen = 100
if len(argv) > 1:
alen = int(argv[1])
a = [randint(-100,100) for i in xrange(alen)]
time0 = time()
print find_maximum_subarray_bf(a)
time1 = time()
print find_maximum_subarray_dc(a)
time2 = time()
print "function 1:", time1-time0
print "function 2:", time2-time1
print "ratio:", (time1-time0)/(time2-time1)
Run Code Online (Sandbox Code Playgroud)
我们得到了我们应该期待的东西:
$ python subarrays.py 50
(3, 48, 1131)
(3, 48, 1131)
function 1: 0.000184059143066
function 2: 0.00020382
ratio: 0.902923976608
$ python subarrays.py 100
(29, 61, 429)
(29, 61, 429)
function 1: 0.000745058059692
function 2: 0.000561952590942
ratio: 1.32583792957
$ python subarrays.py 500
(35, 350, 3049)
(35, 350, 3049)
function 1: 0.0115859508514
function 2: 0.00170588493347
ratio: 6.79175401817
$ python subarrays.py 1000
(313, 572, 3585)
(313, 572, 3585)
function 1: 0.0537149906158
function 2: 0.00334000587463
ratio: 16.082304233
$ python osubarrays.py 10000
(901, 2055, 4441)
(901, 2055, 4441)
function 1: 4.20316505432
function 2: 0.0381460189819
ratio: 110.186204655
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1342 次 |
| 最近记录: |