Abh*_*hra -4 java performance loops
可能重复:
Java中哪些代码段更快?
如果我写一个循环为
for (int i=n; i>=0; i--)
Run Code Online (Sandbox Code Playgroud)
和其他人一样
for (int i=0; i<=n; i++)
Run Code Online (Sandbox Code Playgroud)
在java哪一个会更快,为什么?..说n = 10000
不要怀疑; 使用Google Caliper查找.由于围绕零与上限和递增与递减的测试的相对权重进行了相当多的讨论,这里是所有这些情况的笛卡尔积:
import java.util.Random;
import com.google.caliper.Runner;
import com.google.caliper.SimpleBenchmark;
public class Performance extends SimpleBenchmark {
static final Random rnd = new Random();
public int timeDecrementToZero(int reps) {
int sum = rnd.nextInt();
for (int i = 0; i < reps; i++) {
for (int j = Integer.MAX_VALUE; j >= 0; j--) sum += j;
}
return sum;
}
public int timeDecrementFromZero(int reps) {
int sum = rnd.nextInt();
for (int i = 0; i < reps; i++) {
for (int j = 0; j > Integer.MIN_VALUE; j--) sum += j;
}
return sum;
}
public int timeIncrementFromZero(int reps) {
int sum = rnd.nextInt();
for (int i = 0; i < reps; i++) {
for (int j = 0; j < Integer.MAX_VALUE; j++) sum += j;
}
return sum;
}
public int timeIncrementToZero(int reps) {
int sum = rnd.nextInt();
for (int i = 0; i < reps; i++) {
for (int j = Integer.MIN_VALUE; j < 0; j++) sum += j;
}
return sum;
}
public static void main(String... args) {
Runner.main(Performance.class, args);
}
}
Run Code Online (Sandbox Code Playgroud)
结果:
0% Scenario{vm=java, trial=0, benchmark=DecrementToZero} 984060500.00 ns; ?=30872487.22 ns @ 10 trials
25% Scenario{vm=java, trial=0, benchmark=DecrementFromZero} 982646000.00 ns; ?=35524893.00 ns @ 10 trials
50% Scenario{vm=java, trial=0, benchmark=IncrementFromZero} 1023745500.00 ns; ?=24828496.82 ns @ 10 trials
75% Scenario{vm=java, trial=0, benchmark=IncrementToZero} 1081112500.00 ns; ?=20160821.13 ns @ 10 trials
benchmark ms linear runtime
DecrementToZero 984 ===========================
DecrementFromZero 983 ===========================
IncrementFromZero 1024 ============================
IncrementToZero 1081 ==============================
Run Code Online (Sandbox Code Playgroud)
显然,限制是否为零比使用inc与dec的影响小.
要指出这些差异是多么的琐碎,这里几乎是相同的代码,但现在它使用longs(我在第一个例子中包含一个方法,以维持比例):
public int timeDecrementFromZeroInt(int reps) {
int sum = rnd.nextInt();
for (int i = 0; i < reps; i++) {
for (int j = 0; j > Integer.MIN_VALUE; j--) sum += j;
}
return sum;
}
public long timeDecrementFromZero(int reps) {
long sum = rnd.nextLong();
for (long i = 0; i < reps; i++) {
for (long j = 0; j > Integer.MIN_VALUE; j--) sum += j;
}
return sum;
}
public long timeIncrementFromZero(int reps) {
long sum = rnd.nextLong();
for (long i = 0; i < reps; i++) {
for (long j = 0; j < Integer.MAX_VALUE; j++) sum += j;
}
return sum;
}
public long timeDecrementToZero(int reps) {
long sum = rnd.nextLong();
for (long i = 0; i < reps; i++) {
for (long j = Integer.MAX_VALUE; j >= 0; j--) sum += j;
}
return sum;
}
public long timeIncrementToZero(int reps) {
long sum = rnd.nextLong();
for (long i = 0; i < reps; i++) {
for (long j = Integer.MIN_VALUE; j < 0; j++) sum += j;
}
return sum;
}
Run Code Online (Sandbox Code Playgroud)
结果:
0% Scenario{vm=java, trial=0, benchmark=DecrementFromZeroInt} 978513000.00 ns; ?=14861284.82 ns @ 10 trials
20% Scenario{vm=java, trial=0, benchmark=DecrementFromZero} 2160652000.00 ns; ?=13825686.87 ns @ 3 trials
40% Scenario{vm=java, trial=0, benchmark=IncrementFromZero} 2153370000.00 ns; ?=6318160.49 ns @ 3 trials
60% Scenario{vm=java, trial=0, benchmark=DecrementToZero} 4379893000.00 ns; ?=8739917.79 ns @ 3 trials
80% Scenario{vm=java, trial=0, benchmark=IncrementToZero} 4383569000.00 ns; ?=5798095.89 ns @ 3 trials
benchmark ms linear runtime
DecrementFromZeroInt 979 ======
DecrementFromZero 2161 ==============
IncrementFromZero 2153 ==============
DecrementToZero 4380 =============================
IncrementToZero 4384 ==============================
Run Code Online (Sandbox Code Playgroud)
主要结论:永远不要假设性能如此之低.编写完整的代码并将其作为一个整体进行测试,因为总会有其他一些你没有考虑到的东西,这会彻底改变表格.
| 归档时间: |
|
| 查看次数: |
1112 次 |
| 最近记录: |