如何根据多个标准对Pandas DataFrame进行排序?

mpj*_*jan 25 python pandas

我有以下DataFrame包含歌曲名称,他们的峰值图表位置以及他们在1号位置花费的周数:

                                          Song            Peak            Weeks
76                            Paperback Writer               1               16
117                               Lady Madonna               1                9
118                                   Hey Jude               1               27
22                           Can't Buy Me Love               1               17
29                          A Hard Day's Night               1               14
48                              Ticket To Ride               1               14
56                                       Help!               1               17
109                       All You Need Is Love               1               16
173                The Ballad Of John And Yoko               1               13
85                               Eleanor Rigby               1               14
87                            Yellow Submarine               1               14
20                    I Want To Hold Your Hand               1               24
45                                 I Feel Fine               1               15
60                                 Day Tripper               1               12
61                          We Can Work It Out               1               12
10                               She Loves You               1               36
155                                   Get Back               1                6
8                               From Me To You               1                7
115                              Hello Goodbye               1                7
2                             Please Please Me               2               20
92                   Strawberry Fields Forever               2               12
93                                  Penny Lane               2               13
107                       Magical Mystery Tour               2               16
176                                  Let It Be               2               14
0                                   Love Me Do               4               26
157                                  Something               4                9
166                              Come Together               4               10
58                                   Yesterday               8               21
135                       Back In The U.S.S.R.              19                3
164                         Here Comes The Sun              58               19
96       Sgt. Pepper's Lonely Hearts Club Band              63               12
105         With A Little Help From My Friends              63                7
Run Code Online (Sandbox Code Playgroud)

我想按照受欢迎的顺序对这些歌曲进行排名,所以我想根据以下标准对它们进行排序:达到最高位置的歌曲排在第一位,但如果有平局,那么歌曲会保留在排行榜中最长的是第一个.

我似乎无法弄清楚如何在熊猫中做到这一点.

Wes*_*ney 30

在pandas 0.9.1及更高版本上,这应该可行(这是0.10.0b1):

(编辑:截至Pandas 0.19,方法sort_index已弃用.首选sort_values)

In [23]: songs.sort_index(by=['Peak', 'Weeks'], ascending=[True, False])
Out[23]: 
                                      Song  Peak  Weeks
10                           She Loves You     1     36
118                               Hey Jude     1     27
20                I Want To Hold Your Hand     1     24
22                       Can't Buy Me Love     1     17
56                                   Help!     1     17
76                        Paperback Writer     1     16
109                   All You Need Is Love     1     16
45                             I Feel Fine     1     15
29                      A Hard Day's Night     1     14
48                          Ticket To Ride     1     14
85                           Eleanor Rigby     1     14
87                        Yellow Submarine     1     14
173            The Ballad Of John And Yoko     1     13
60                             Day Tripper     1     12
61                      We Can Work It Out     1     12
117                           Lady Madonna     1      9
8                           From Me To You     1      7
115                          Hello Goodbye     1      7
155                               Get Back     1      6
2                         Please Please Me     2     20
107                   Magical Mystery Tour     2     16
176                              Let It Be     2     14
93                              Penny Lane     2     13
92               Strawberry Fields Forever     2     12
0                               Love Me Do     4     26
166                          Come Together     4     10
157                              Something     4      9
58                               Yesterday     8     21
135                   Back In The U.S.S.R.    19      3
164                     Here Comes The Sun    58     19
96   Sgt. Pepper's Lonely Hearts Club Band    63     12
105     With A Little Help From My Friends    63      7
Run Code Online (Sandbox Code Playgroud)

  • 这是一个老问题,但万一有人仍然需要这个..你想要的是[pandas.DataFrame.reset_index](http://pandas.pydata.org/pandas-docs/stable/generated/pandas .DataFrame.reset_index.html)(试试`df.reset_index(drop = True,inplace = True)`) (3认同)
  • 谢谢!您是否知道数据框是否可以根据新订单重新计算索引?(即,使得与数据框中每行相关联的索引根据新的顺序增长) (2认同)

Rob*_*lak 22

由于pandas 0.17.0,sort不推荐使用并替换为sort_values:

df.sort_values(['Peak', 'Weeks'], ascending=[True, False], inplace=True)
Run Code Online (Sandbox Code Playgroud)


小智 18

df.sort(['Peak', 'Weeks'], ascending=[True, False], inplace=True)
Run Code Online (Sandbox Code Playgroud)

如果您想要将分类结果供将来使用,inplace=True则需要.


Jon*_*nts 5

使用.sort()

df.sort(['Peak', 'Weeks'], ascending=[True, False])
Run Code Online (Sandbox Code Playgroud)

将按照峰值位置的升序排序,然后按照图表中长度的降序排列.