abu*_*dis 19 python indexing numpy
假设你有一个numpy数组和一个列表:
>>> a = np.array([1,2,2,1]).reshape(2,2)
>>> a
array([[1, 2],
[2, 1]])
>>> b = [0, 10]
Run Code Online (Sandbox Code Playgroud)
我想替换数组中的值,以便将1替换为0,将2替换为10.
我在这里发现了类似的问题 - http://mail.python.org/pipermail//tutor/2011-September/085392.html
但使用此解决方案:
for x in np.nditer(a):
if x==1:
x[...]=x=0
elif x==2:
x[...]=x=10
Run Code Online (Sandbox Code Playgroud)
给我一个错误:
ValueError: assignment destination is read-only
Run Code Online (Sandbox Code Playgroud)
我想这是因为我无法写入一个numpy数组.
PS numpy数组的实际大小是514乘504,列表是8.
ale*_*dan 30
好吧,我想你需要的是什么
a[a==2] = 10 #replace all 2's with 10's
Run Code Online (Sandbox Code Playgroud)
Dor*_*scu 22
numpy中的只读数组可以写入:
nArray.flags.writeable = True
Run Code Online (Sandbox Code Playgroud)
这将允许像这样的赋值操作:
nArray[nArray == 10] = 9999 # replace all 10's with 9999's
Run Code Online (Sandbox Code Playgroud)
真正的问题不是赋值本身,而是可写标志.
unu*_*tbu 19
不是逐个替换值,而是可以像这样重新映射整个数组:
import numpy as np
a = np.array([1,2,2,1]).reshape(2,2)
# palette must be given in sorted order
palette = [1, 2]
# key gives the new values you wish palette to be mapped to.
key = np.array([0, 10])
index = np.digitize(a.ravel(), palette, right=True)
print(key[index].reshape(a.shape))
Run Code Online (Sandbox Code Playgroud)
产量
[[ 0 10]
[10 0]]
Run Code Online (Sandbox Code Playgroud)
上述想法归功于@JoshAdel.它明显快于我原来的答案:
import numpy as np
import random
palette = np.arange(8)
key = palette**2
a = np.array([random.choice(palette) for i in range(514*504)]).reshape(514,504)
def using_unique():
palette, index = np.unique(a, return_inverse=True)
return key[index].reshape(a.shape)
def using_digitize():
index = np.digitize(a.ravel(), palette, right=True)
return key[index].reshape(a.shape)
if __name__ == '__main__':
assert np.allclose(using_unique(), using_digitize())
Run Code Online (Sandbox Code Playgroud)
我用这种方式对两个版本进行了基准测试
In [107]: %timeit using_unique()
10 loops, best of 3: 35.6 ms per loop
In [112]: %timeit using_digitize()
100 loops, best of 3: 5.14 ms per loop
Run Code Online (Sandbox Code Playgroud)