Pro*_*irl 20 mysql join sql-order-by query-optimization
我有以下JOIN查询:
SELECT
table1.*,
table2.*
FROM
Table1 AS table1
LEFT JOIN
Table2 AS table2
USING
(col1)
LEFT JOIN
Table3 as table3
USING
(col1)
WHERE
3963.191 *
ACOS(
(SIN(PI() * $usersLatitude / 180) * SIN(PI() * table3.latitude / 180))
+
(COS(PI() * $usersLatitude / 180) * COS(PI() * table3.latitude / 180) * COS(PI() * table3.longitude / 180 - PI() * 37.1092162 / 180))
) <= 10
AND
table1.col1 != '1'
AND
table1.col2 LIKE 'A'
AND
(table1.col3 LIKE 'X' OR table1.col3 LIKE 'X-Y')
AND
(table2.col4 = 'Y' OR table2.col5 = 'Y')
// Data Types of all columns in the query:
// col1: int(11)
// col2: char(1)
// col3: varchar(3)
// col4: char(1)
// col5: char(1)
// col6: int(11)
// latitude: varchar(25)
// longitude: varchar(25)
// All 3 tables (table1, table2, and table3) are `MyISAM`.
Run Code Online (Sandbox Code Playgroud)
它在0.15秒内执行.
但是,如果我只是添加:
ORDER BY
table1.col6 DESC
Run Code Online (Sandbox Code Playgroud)
它执行超过3秒.
查询中的所有列都已编制索引,包括在中table1.col6
使用的列ORDER BY
.
以下是EXPLAIN EXTENDED
WITHOUT 的结果ORDER BY
:
id select_type table type possible_keys key key_len ref rows filtered Extra
1 SIMPLE table1 ALL PRIMARY,col2,col3 NULL NULL NULL 140101 72.61 Using where
1 SIMPLE table2 eq_ref PRIMARY,col4,col5 PRIMARY 4 table1.col1 1 100 Using where
1 SIMPLE table3 eq_ref PRIMARY PRIMARY 4 table1.col1 1 100 Using where
Run Code Online (Sandbox Code Playgroud)
以下是EXPLAIN EXTENDED
WITH 的结果ORDER BY
:
id select_type table type possible_keys key key_len ref rows filtered Extra
1 SIMPLE table1 ALL PRIMARY,col2,col3 NULL NULL NULL 140101 72.61 Using where; Using filesort
1 SIMPLE table2 eq_ref PRIMARY,col4,col5 PRIMARY 4 table1.col1 1 100 Using where
1 SIMPLE table3 eq_ref PRIMARY PRIMARY 4 table1.col1 1 100 Using where
Run Code Online (Sandbox Code Playgroud)
奇怪的是,我ORDER BY DESC
在这个网站上的其他几个查询中使用它,并且它不会像在这个特定查询中那样减慢速度.这个查询有一些特定的东西会导致它显着减慢ORDER BY
.
我也在ANALYZE TABLE
所有3张桌子上做过,他们都报道了OK
.然后我用LIKE
查询替换了查询中的每一个,=
它实际上使查询没有ORDER BY
从0.2秒到3秒.换句话说,替换LIKE
为=
使原始查询与添加一样长ORDER BY
!考虑到LIKE
更多的工作,这怎么可能=
呢?也许这就是为什么ORDER BY
需要这么长时间的线索?
在这里我做了多少尝试(非常成功):
1)而不是SELECT table1.*, table2.*
,我尝试了SELECT table1.col1
,它仍然需要3秒钟才能完成.
2)我尝试添加一个综合指数上col1
,col2
,col3
,和col6
在Table1
,但它并没有提高执行速度.
3)我尝试了这种解决方案,使查询成为一个子查询,然后将其ORDER BY
外部包装在最后,但它并没有提高执行速度.
4)我尝试了以下版本的查询,但它没有改进任何东西,实际上使查询花了3秒甚至没有ORDER BY
添加到它(也许这提供了另一条线索):
SELECT STRAIGHT_JOIN
T1.*,
T2.*
FROM
Table1 AS T1
JOIN Table2 AS T2
ON T1.Col1 = T2.Col1
AND ( T2.Col4 = 'Y' OR T2.Col5 = 'Y' )
JOIN Table3 as T3
ON T1.Col1 = T3.Col1
AND 3963.191
* ACOS( (SIN(PI() * $usersLatitude / 180) * SIN(PI() * T3.latitude / 180))
+ ( COS(PI() * $usersLatitude / 180) * COS(PI() * T3.latitude / 180)
* COS(PI() * table3.longitude / 180 - PI() * 37.1092162 / 180)
)
) <= 10
WHERE
T1.Col2 LIKE 'A'
AND ( T1.col3 LIKE 'X' OR T1.col3 LIKE 'X-Y')
AND T1.Col1 != '1'
ORDER BY
T1.Col6
// With the following composite indexes:
// On Table 1, index on ( Col2, Col3, Col1, Col6 )
// On Table 2, index on ( Col1, Col4, Col5 )
// Remember, all individual columns are already indexed.
Run Code Online (Sandbox Code Playgroud)
...
如何让这个顽固的查询快速运行ORDER BY
? 或者这是不可能的?
编辑:
SHOW CREATE TABLE
所有3个表的结果:
CREATE TABLE `Table1` (
`col1` int(11) unsigned NOT NULL AUTO_INCREMENT,
`col100` varchar(25) CHARACTER SET utf8 DEFAULT NULL,
`col101` varchar(60) COLLATE utf8_bin DEFAULT NULL,
`col102` varchar(50) CHARACTER SET utf8 DEFAULT NULL,
`col103` varchar(10) COLLATE utf8_bin DEFAULT '00000000',
`col104` date NOT NULL,
`col105` int(3) DEFAULT NULL,
`col106` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`col107` varchar(20) COLLATE utf8_bin DEFAULT 'Blah',
`col108` varchar(2) COLLATE utf8_bin DEFAULT 'No',
`col109` varchar(15) COLLATE utf8_bin DEFAULT 'Blah',
`col2` enum('A','B') COLLATE utf8_bin DEFAULT NULL,
`col3` enum('A','B','A-B') COLLATE utf8_bin DEFAULT NULL,
`col110` decimal(10,7) NOT NULL DEFAULT '0.0000000',
`col111` decimal(10,7) NOT NULL DEFAULT '0.0000000',
`col112` char(1) COLLATE utf8_bin DEFAULT 'N',
`col113` char(1) COLLATE utf8_bin DEFAULT 'N',
`col114` int(11) DEFAULT NULL,
`col115` varchar(15) COLLATE utf8_bin DEFAULT 'Blah',
`col6` int(11) DEFAULT NULL,
`col117` varchar(45) COLLATE utf8_bin DEFAULT NULL,
`col118` varchar(2) COLLATE utf8_bin NOT NULL,
`col119` tinyint(2) NOT NULL,
`col120` int(6) NOT NULL,
`col121` varchar(7) COLLATE utf8_bin NOT NULL,
`col122` varchar(6) COLLATE utf8_bin NOT NULL,
`col123` char(1) COLLATE utf8_bin NOT NULL DEFAULT 'A',
`col124` varchar(200) COLLATE utf8_bin NOT NULL,
`col125` tinyint(4) NOT NULL,
`col126` tinyint(1) NOT NULL,
`col127` varchar(1) COLLATE utf8_bin NOT NULL DEFAULT 'A',
`col128` tinyint(1) NOT NULL DEFAULT '0',
`col129` smallint(5) unsigned NOT NULL,
`col130` varchar(1) COLLATE utf8_bin NOT NULL DEFAULT 'A',
`col131` int(11) NOT NULL,
`col132` tinyint(1) NOT NULL,
`col133` tinyint(1) NOT NULL,
`col134` varchar(1) COLLATE utf8_bin NOT NULL,
`col135` varchar(200) COLLATE utf8_bin NOT NULL,
`col136` int(11) NOT NULL,
`col137` int(10) unsigned NOT NULL,
`col138` int(11) NOT NULL,
`col139` tinyint(1) NOT NULL,
`col140` tinyint(1) NOT NULL,
`col141` tinyint(4) NOT NULL,
`col142` varchar(25) COLLATE utf8_bin NOT NULL,
`col143` varchar(25) COLLATE utf8_bin NOT NULL,
`col144` tinyint(1) unsigned NOT NULL,
`col145` tinyint(4) NOT NULL,
PRIMARY KEY (`col1`),
KEY `col2` (`col2`),
KEY `col3` (`col3`),
KEY `CompositeIndex0` (`col1`,`col2`,`col3`,`col6`),
KEY `CompositeIndex1` (`col2`,`col3`,`col1`,`col6`),
KEY `idx01` (`col1`,`col2`,`col3`)
[19 other indexes that do not involve col1, col2, col3, or col6...]
) ENGINE=MyISAM AUTO_INCREMENT=160640 DEFAULT CHARSET=utf8 COLLATE=utf8_bin
//*******************************************************//
CREATE TABLE `Table2` (
`col1` int(11) unsigned NOT NULL DEFAULT '0',
`col201` varchar(45) CHARACTER SET utf8 COLLATE utf8_unicode_ci DEFAULT 'Blah',
`col202` varchar(45) CHARACTER SET utf8 COLLATE utf8_unicode_ci DEFAULT 'Blah',
`col203` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col204` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col205` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col206` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col207` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col208` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col209` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col210` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col211` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col212` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col213` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col214` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col215` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col216` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col217` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col218` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col219` varchar(45) COLLATE utf8_bin DEFAULT 'Blah',
`col220` varchar(255) COLLATE utf8_bin DEFAULT 'Blah',
`col221` varchar(255) COLLATE utf8_bin DEFAULT 'Blah',
`col222` varchar(255) COLLATE utf8_bin DEFAULT 'Blah',
`col223` varchar(255) COLLATE utf8_bin DEFAULT 'Blah',
`col224` varchar(45) COLLATE utf8_bin DEFAULT ‘Blah’,
`col225` varchar(255) COLLATE utf8_bin DEFAULT NULL,
`col4` char(1) COLLATE utf8_bin DEFAULT 'A',
`col226` char(1) COLLATE utf8_bin DEFAULT 'A',
`col227` varchar(5) COLLATE utf8_bin DEFAULT 'Blah',
`col228` char(1) COLLATE utf8_bin NOT NULL,
`col229` text COLLATE utf8_bin,
`col5` char(1) COLLATE utf8_bin DEFAULT 'A',
`col230` varchar(255) COLLATE utf8_bin DEFAULT 'Blah',
`col231` varchar(255) COLLATE utf8_bin DEFAULT NULL,
`col232` varchar(255) COLLATE utf8_bin DEFAULT NULL,
`col233` varchar(255) COLLATE utf8_bin DEFAULT NULL,
PRIMARY KEY (`col1`),
KEY `col4` (`col4`),
KEY `col5` (`col5`),
KEY `CompositeIndex1` (`col1`,`col4`,`col5`),
[4 other indexes not involving col1, col4, col5...]
FULLTEXT KEY `col220` (`col220`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin
//*******************************************************//
CREATE TABLE `Table3` (
`col1` int(11) unsigned NOT NULL DEFAULT '0',
`col300` varchar(255) COLLATE utf8_bin DEFAULT NULL,
`latitude` varchar(25) COLLATE utf8_bin NOT NULL DEFAULT '0',
`longitude` varchar(25) COLLATE utf8_bin NOT NULL DEFAULT '0',
`col301` int(11) DEFAULT NULL,
`static2` float(18,16) DEFAULT '0.0000000000000000',
`static3` float(18,16) DEFAULT '0.0000000000000000',
PRIMARY KEY (`col1`),
KEY `latitude` (`latitude`),
KEY `longitude` (`longitude`),
KEY `static2` (`static2`),
KEY `static3` (`static3`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin
Run Code Online (Sandbox Code Playgroud)
编辑2:
下面是我的MySQL配置文件.除其他外,请注意如何sort-buffer-size
设置1M
.根据这个,它不应该设置在上面,256K
或者它实际上可以减慢"37x". 这可能是问题的一部分吗?
# The MySQL database server configuration file.
[mysqld]
open-files-limit = 20000
thread-cache-size = 16
table-open-cache = 2048
table-definition-cache = 512
query-cache-type = 1
query-cache-size = 32M
query-cache-limit = 1M
sort-buffer-size = 1M
read-buffer-size = 1M
read-rnd-buffer-size = 8M
join-buffer-size = 1M
tmp-table-size = 64M
max-heap-table-size = 64M
back-log = 100
max-connections = 200
max-connect-errors = 10000
max-allowed-packet = 16M
interactive-timeout = 600
wait-timeout = 180
net_read_timeout = 30
net_write_timeout = 30
back_log = 128
myisam-sort-buffer-size = 128M
innodb-buffer-pool-size = 320M
innodb-log-buffer-size = 4M
innodb-log-file-size = 128M
innodb-log-files-in-group = 2
innodb-file-per-table = 1
[mysqldump]
max-allowed-packet = 16M
Run Code Online (Sandbox Code Playgroud)
另一方面,以下是EXPLAIN EXTENDED
IVAN最新查询的结果:
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE T1 ref PRIMARY,col2,col3,col1,CompositeIndex1,idx01 CompositeIndex1 2 const 92333 Using where; Using filesort
1 SIMPLE T3 eq_ref PRIMARY PRIMARY 4 T1.col1 1 Using where
1 SIMPLE T2 eq_ref PRIMARY,CompositeIndex1,idx_static1 PRIMARY 4 T1.col1 1 Using where
Run Code Online (Sandbox Code Playgroud)
另一方面,这里有一些非常奇怪的事情.以下版本的查询WITH ORDER BY
仅在0.2秒内完成:
SELECT STRAIGHT_JOIN T1 . * , T2 . *
FROM Table3 AS T3
JOIN Table2 AS T2 ON T3.col1 = T2.col1
AND (
T2.col4 = 'Y'
OR T2.col5 = 'Y'
)
JOIN Table1 AS T1 ON T3.col1 = T1.col1
AND 3963.191 * ACOS( (
SIN( PI( ) * - 87.8819594 /180 ) * SIN( PI( ) * T3.latitude /180 ) ) + ( COS( PI( ) * - 87.8819594 /180 ) * COS( PI( ) * T3.latitude /180 ) * COS( PI( ) * T3.longitude /180 - PI( )* 37.1092162 /180 ) )
) <=10
WHERE T1.col2 LIKE 'A'
AND (
T1.col3 LIKE 'X'
OR T1.col3 LIKE 'X-Y'
)
AND T1.col1 != '1'
ORDER BY T1.col6 DESC
Run Code Online (Sandbox Code Playgroud)
基本上,此版本的查询执行a FROM Table3 AS T3
和JOIN
表1和2,而原始查询执行FROM Table1 AS T1
和JOIN
表2和3.
这是EXPLAIN EXTENDED
上面的查询:
id select_type table type possible_keys key key_len ref rows filtered Extra
1 SIMPLE T3 ALL PRIMARY NULL NULL NULL 141923 100 Using where; Using temporary; Using filesort
1 SIMPLE T2 eq_ref PRIMARY,col4,col5,CompositeIndex1 PRIMARY 4 T3.col1 1 100 Using where
1 SIMPLE T1 eq_ref PRIMARY,col2,col3,col1,CompositeIndex1,idx01 PRIMARY 4 T2.col1 1 100 Using where
Run Code Online (Sandbox Code Playgroud)
注意这个查询实际上对Ivan的原始查询和新查询实际上只做了a filesort
和a temporary
对比a filesort
. 怎么能快10倍?
更奇怪的是,切换顺序JOIN
似乎并没有改善原始查询和Ivan的新查询. 这是为什么?
好吧,我建议你查询一些重做:
放入条件不加入相关的地方,请参阅第二个查询:
AND(T1.col3喜欢'X'或T1.col3喜欢'X-Y')
避免或使用IN
避免像使用=
AND T1.col3 IN('X','X-Y')
避免计算在哪里
创建一些新的存储列:
SIN(PI() * T3.latitude / 180)
COS(PI() * table3.longitude / 180 - PI() * 37.1092162 / 180)
COS(PI() * T3.latitude / 180)
Run Code Online (Sandbox Code Playgroud)
预评估
SIN(PI()*$ usersLatitude/180)COS(PI()*$ usersLatitude/180)
如果所有这些"技巧"都无法避免文件排序强制索引
进一步补充
为了删除:
( T2.Col4 = 'Y' OR T2.Col5 = 'Y' )
Run Code Online (Sandbox Code Playgroud)
在这种情况下,您不能使用IN,因此请创建一个新列,该列是此表达式的结果.
alter table table2 add static1 bit default 0;
alter table add index idx_static1(static1);
update table2 t2 set static1=1 where ( T2.Col4 = 'Y' OR T2.Col5 = 'Y' );
alter table table3 add static2 float(18,16) default 0;
update table3 set static2=SIN(PI() * T3.latitude / 180) where 1
alter table table3 add static3 float(18,16) default 0;
update table3 set static3 = COS(PI() * T3.latitude / 180) * COS(PI() * table3.longitude / 180 - PI() * 37.1092162 / 180) where 1
Run Code Online (Sandbox Code Playgroud)
如果table1.col2的值很少
alter table table1 change col2 col2 enum('A','B','C');
Run Code Online (Sandbox Code Playgroud)
如果table1.col3的值很少
alter table table1 change col3 col3 enum('X','Y','X-Y');
Run Code Online (Sandbox Code Playgroud)
为alter table add index idx01(col1,col2,col3)所涉及的所有列创建唯一索引
SELECT STRAIGHT_JOIN
T1.*,
T2.*
FROM
Table1 AS T1
JOIN Table2 AS T2 ON T1.Col1 = T2.Col1
JOIN Table3 as T3 ON T1.Col1 = T3.Col1
WHERE static1=1 AND
T1.Col2 = 'A'
AND T1.col3 IN ( 'X', 'X-Y')
AND T1.Col1 != 1
AND ACOS(
(
$usersLatitude_sin_pi_fract180 * t3.static2
+ $usersLatitude_cos_pi_fract180 * t3.static3
)
) <= 0,00252321929476 -- this's 10/3963.191
ORDER BY T1.Col6
Run Code Online (Sandbox Code Playgroud)
您的评论建议我在查询中有不同的排序规则(col1是latin1_swedish,col2是utf8)或者您的连接使用不同的排序规则(您的连接是utf-8并且您查询latin1_german列)所以当您查询时:
t1.col2 = 'A'
Run Code Online (Sandbox Code Playgroud)
Mysql必须将每个值从utf-8转换为latin1.
另请参阅mysql文档的collate部分.
一种快速的方法是将所有(列,表,服务器,连接,客户端)转换为相同的排序规则,如果不需要utf-8,则singel字节会更好.
请注意我的类型错误或语法错误.
进一步补充2
我在测试数据库上重新创建了表,并修复了这些列:t1.col2,t2.col3 必须不可为空,t1.col1是主要的,不能为空.
索引"t1.CompositeIndex1"应仅索引:col2,col3,col1; 索引"order by"列是无用的或最差的.
我创建了static1,我在t2.col1和t2.static1上创建了一个索引,但我没有使用DB中的6行(请参阅后面的解释).t2.static1也不能为空.
我还将查询调整为列的整理:
SELECT T1.*, T2.*
FROM Table1 AS T1
JOIN Table2 AS T2 ON ( T1.Col1 = T2.Col1 )
JOIN Table3 as T3 ON T1.Col1 = T3.Col1
WHERE
( T1.Col2 = 'A' collate utf8_bin AND T1.col3 IN ( 'X' collate utf8_bin , 'X-Y' collate utf8_bin ) AND T1.Col1 != 1 )
and T2.static1=1
AND ACOS( ( 2.3 * T3.static2 + 1.2 * T3.static3 ) ) <= 0.00252321929476
ORDER BY T1.Col6
Run Code Online (Sandbox Code Playgroud)
以下是扩展的解释
+----+-------------+-------+--------+-----------------------------------+-----------------+---------+----------------+------+----------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+--------+-----------------------------------+-----------------+---------+----------------+------+----------+-----------------------------+
| 1 | SIMPLE | T1 | ref | PRIMARY,col2,col3,CompositeIndex1 | CompositeIndex1 | 1 | const | 1 | 100.00 | Using where; Using filesort |
| 1 | SIMPLE | T2 | eq_ref | PRIMARY,CompositeIndex1 | PRIMARY | 4 | testdb.T1.col1 | 1 | 100.00 | Using where |
| 1 | SIMPLE | T3 | eq_ref | PRIMARY | PRIMARY | 4 | testdb.T1.col1 | 1 | 100.00 | Using where |
+----+-------------+-------+--------+-----------------------------------+-----------------+---------+----------------+------+----------+-----------------------------+
Run Code Online (Sandbox Code Playgroud)
对于colums 是否相同:select_type,table,type,key,ref,filtered,Extra?
我的优化目标是: - 适应少数索引中的where条件 - 避免计算 - 避免整理转换 - 避免OR - 避免在条件中的NULL
现在坏消息似乎在表中你有~140K记录,并且查询使用顺序可能意味着使用filesort方法如果查询涉及很多行,那么最终答案可以增加memsort缓冲区作为建议通过@mavroprovato.
进一步添加3
为了evauate的充分性的key_buffer_size上看到http://dba.stackexchange.com
进一步补充4
我认为只有甲骨文中的某个人才能确切地说出会发生什么,但我有我的想法.
我认为这个查询很奇怪:
因为1 from_table_rows> = join1_table_rows> = join2_table_rows,所以较少的行返回from table最快将是其他2个JOIN
评估工作量的优化器将计算出类似的等式:
effort = num_rows*key_size/index_cardinality
Run Code Online (Sandbox Code Playgroud)
(index_cardinality由phpmyadmin显示下一个索引)
因为2次努力是> = num_rows
我的查询 因为3的table1(从表中)返回92333行,table3(join1_table)减少到1(!)行,table2保持1行(努力~3).
您的查询 因为2你应该有一个努力= 140000,但幸运的是你的calc只返回1个结果所以你的查询非常快
笔画演示
在您的查询从"<= 10"(在连接条件中)更改为"<= 1000"或更多时,您将看到性能呈指数下降.
在我的查询中,从"<= 10"(在连接条件下)变为"<= 1000"或更多,您将看到性能的线性/对数减少.
进一步添加5
回答这个问题:sort-buffer-size是不是太大了?
站在文章上,是的,尝试一些调,可能是你可以解决问题
回答问题:不可能快速查询?
恕我直言,这是可能的(即使sort-buffer-size不能解决).
我的想法很简单,它可以在这个动词中恢复:"cirlce很好,但是方形更好".
目前最大的基数在表3中的坐标上,但由于公式没有索引适用.因此,不是搜索半径内的所有点,而是搜索"正方形"内的所有点
FROM table3
...
WHERE (t3.latitude-0.15) < $usersLatitude AND $usersLatitude < t3.latitude+0.15
AND t3.longitue - 0.15 < $usersLongitude AND $usersLongitude < t3.longitue + 0.15
Run Code Online (Sandbox Code Playgroud)
所以你可以在(t3.latitude,t3.longitue)中创建一个索引.
0.15度应该是10英里.当然,您应该在日变化的子午线附近和极点附近修复计算
如果您需要严格的半径,您可以使用半径公式重新连接table3(请参见下面的示例),或者如果可能,执行(/详细说明)公式,直到您可以直接比较值与列.
FROM table3 t3
JOIN table3 t3bis ON t3.id=t3bis.id
...
WHERE (t3.latitude-0.15) < $usersLatitude AND $usersLatitude < t3.latitude+0.15
AND t3.longitue - 0.15 < $usersLongitude AND $usersLongitude < t3.longitue + 0.15
AND
3963.191
* ACOS( (SIN(PI() * $usersLatitude / 180) * SIN(PI() * t3bis.latitude / 180))
+ ( COS(PI() * $usersLatitude / 180) * COS(PI() * t3bis.latitude / 180)
* COS(PI() * t3bis.longitude / 180 - PI() * 37.1092162 / 180)
)
) <= 10
Run Code Online (Sandbox Code Playgroud)
进一步补充6
话题:编译好的函数做得更好
使用RADIANS()函数
degree * PI / 180 == radians(degree)
Run Code Online (Sandbox Code Playgroud)
使用mysql的GIS扩展
经过多次尝试和错误,我终于找到了我的问题的解决方案。
如果我们将整个 WHERE 子句(计算半径的部分除外)放在原始查询之外,那么我们会得到一个非常快的查询,它不会temporary
像更改执行顺序那样使用JOIN
:
SELECT * FROM
{
SELECT
col1, col2, col3, col4, col5, col6
FROM
Table1 AS table1
LEFT JOIN
Table2 AS table2
USING
(col1)
LEFT JOIN
Table3 as table3
USING
(col1)
WHERE
3963.191 *
ACOS(
(SIN(PI() * $usersLatitude / 180) * SIN(PI() * table3.latitude / 180))
+
(COS(PI() * $usersLatitude / 180) * COS(PI() * table3.latitude / 180) * COS(PI() * table3.longitude / 180 - PI() * 37.1092162 / 180))
) <= 10
) AS sub
WHERE
col1 != '1'
AND
col2 LIKE 'A'
AND
(col3 LIKE 'X' OR col3 LIKE 'X-Y')
AND
(col4 = 'Y' OR col5 = 'Y')
ORDER BY
col6 DESC
Run Code Online (Sandbox Code Playgroud)
本质上,这个查询首先JOIN
根据半径获取所有 3 个表的结果,然后才应用其余的过滤器来获取我们需要的结果。此版本的查询返回与原始查询完全相同的结果,但执行时间仅为0.2秒,而原始查询的执行时间超过3 秒。
这是EXPLAIN EXTENDED
它的:
id select_type table type possible_keys key key_len ref rows filtered Extra
1 PRIMARY <derived2> ALL NULL NULL NULL NULL 43 100 Using where; Using filesort
2 DERIVED T3 ALL PRIMARY NULL NULL NULL 143153 100 Using where
2 DERIVED users eq_ref PRIMARY,col1,idx01 PRIMARY 4 T3.col1 1 100
2 DERIVED userProfile eq_ref PRIMARY,CompositeIndex1 PRIMARY 4 users.col1 1 100
Run Code Online (Sandbox Code Playgroud)
我要感谢Ivan Buttinoni在这方面所做的出色工作。他发现了几种巧妙的方法可以使查询更快。
这个故事的寓意: 不仅可以通过将子句放在主查询之外ORDER BY
来加快查询速度,还可以通过将部分 WHERE 子句放在主查询之外来获得更快的查询,在这种情况下也是如此。
归档时间: |
|
查看次数: |
1895 次 |
最近记录: |