Han*_*Sun 11 c python suffix-tree suffix-array programming-pearls
摘自编程珍珠第15.2节
可在此处查看C代码:http://www.cs.bell-labs.com/cm/cs/pearls/longdup.c
当我使用suffix-array在Python中实现它时:
example = open("iliad10.txt").read()
def comlen(p, q):
i = 0
for x in zip(p, q):
if x[0] == x[1]:
i += 1
else:
break
return i
suffix_list = []
example_len = len(example)
idx = list(range(example_len))
idx.sort(cmp = lambda a, b: cmp(example[a:], example[b:])) #VERY VERY SLOW
max_len = -1
for i in range(example_len - 1):
this_len = comlen(example[idx[i]:], example[idx[i+1]:])
print this_len
if this_len > max_len:
max_len = this_len
maxi = i
Run Code Online (Sandbox Code Playgroud)
我发现这idx.sort
一步很慢.我认为它很慢,因为Python需要通过值而不是指针传递子串(如上面的C代码).
测试文件可以从这里下载
C代码只需0.3秒即可完成.
time cat iliad10.txt |./longdup
On this the rest of the Achaeans with one voice were for
respecting the priest and taking the ransom that he offered; but
not so Agamemnon, who spoke fiercely to him and sent him roughly
away.
real 0m0.328s
user 0m0.291s
sys 0m0.006s
Run Code Online (Sandbox Code Playgroud)
但是对于Python代码,它永远不会在我的计算机上结束(我等了10分钟并将其杀死)
有没有人有想法如何使代码有效?(例如,不到10秒)
hyn*_*cer 13
我的解决方案基于Suffix阵列.它由最长公共前缀的前缀加倍构成.最坏情况的复杂度是O(n(log n)^ 2).我的笔记本电脑上的任务"iliad.mb.txt"需要4秒钟.该代码是很好的记录里面的功能和.后一种功能很短,可以很容易地修改,例如用于搜索10个最长的非重叠子串. 如果重复的字符串超过10000个字符,则此Python代码比问题中的原始C代码(此处复制)更快.suffix_array
longest_common_substring
from itertools import groupby
from operator import itemgetter
def longest_common_substring(text):
"""Get the longest common substrings and their positions.
>>> longest_common_substring('banana')
{'ana': [1, 3]}
>>> text = "not so Agamemnon, who spoke fiercely to "
>>> sorted(longest_common_substring(text).items())
[(' s', [3, 21]), ('no', [0, 13]), ('o ', [5, 20, 38])]
This function can be easy modified for any criteria, e.g. for searching ten
longest non overlapping repeated substrings.
"""
sa, rsa, lcp = suffix_array(text)
maxlen = max(lcp)
result = {}
for i in range(1, len(text)):
if lcp[i] == maxlen:
j1, j2, h = sa[i - 1], sa[i], lcp[i]
assert text[j1:j1 + h] == text[j2:j2 + h]
substring = text[j1:j1 + h]
if not substring in result:
result[substring] = [j1]
result[substring].append(j2)
return dict((k, sorted(v)) for k, v in result.items())
def suffix_array(text, _step=16):
"""Analyze all common strings in the text.
Short substrings of the length _step a are first pre-sorted. The are the
results repeatedly merged so that the garanteed number of compared
characters bytes is doubled in every iteration until all substrings are
sorted exactly.
Arguments:
text: The text to be analyzed.
_step: Is only for optimization and testing. It is the optimal length
of substrings used for initial pre-sorting. The bigger value is
faster if there is enough memory. Memory requirements are
approximately (estimate for 32 bit Python 3.3):
len(text) * (29 + (_size + 20 if _size > 2 else 0)) + 1MB
Return value: (tuple)
(sa, rsa, lcp)
sa: Suffix array for i in range(1, size):
assert text[sa[i-1]:] < text[sa[i]:]
rsa: Reverse suffix array for i in range(size):
assert rsa[sa[i]] == i
lcp: Longest common prefix for i in range(1, size):
assert text[sa[i-1]:sa[i-1]+lcp[i]] == text[sa[i]:sa[i]+lcp[i]]
if sa[i-1] + lcp[i] < len(text):
assert text[sa[i-1] + lcp[i]] < text[sa[i] + lcp[i]]
>>> suffix_array(text='banana')
([5, 3, 1, 0, 4, 2], [3, 2, 5, 1, 4, 0], [0, 1, 3, 0, 0, 2])
Explanation: 'a' < 'ana' < 'anana' < 'banana' < 'na' < 'nana'
The Longest Common String is 'ana': lcp[2] == 3 == len('ana')
It is between tx[sa[1]:] == 'ana' < 'anana' == tx[sa[2]:]
"""
tx = text
size = len(tx)
step = min(max(_step, 1), len(tx))
sa = list(range(len(tx)))
sa.sort(key=lambda i: tx[i:i + step])
grpstart = size * [False] + [True] # a boolean map for iteration speedup.
# It helps to skip yet resolved values. The last value True is a sentinel.
rsa = size * [None]
stgrp, igrp = '', 0
for i, pos in enumerate(sa):
st = tx[pos:pos + step]
if st != stgrp:
grpstart[igrp] = (igrp < i - 1)
stgrp = st
igrp = i
rsa[pos] = igrp
sa[i] = pos
grpstart[igrp] = (igrp < size - 1 or size == 0)
while grpstart.index(True) < size:
# assert step <= size
nextgr = grpstart.index(True)
while nextgr < size:
igrp = nextgr
nextgr = grpstart.index(True, igrp + 1)
glist = []
for ig in range(igrp, nextgr):
pos = sa[ig]
if rsa[pos] != igrp:
break
newgr = rsa[pos + step] if pos + step < size else -1
glist.append((newgr, pos))
glist.sort()
for ig, g in groupby(glist, key=itemgetter(0)):
g = [x[1] for x in g]
sa[igrp:igrp + len(g)] = g
grpstart[igrp] = (len(g) > 1)
for pos in g:
rsa[pos] = igrp
igrp += len(g)
step *= 2
del grpstart
# create LCP array
lcp = size * [None]
h = 0
for i in range(size):
if rsa[i] > 0:
j = sa[rsa[i] - 1]
while i != size - h and j != size - h and tx[i + h] == tx[j + h]:
h += 1
lcp[rsa[i]] = h
if h > 0:
h -= 1
if size > 0:
lcp[0] = 0
return sa, rsa, lcp
Run Code Online (Sandbox Code Playgroud)
我更喜欢这个解决方案而不是更复杂的O(n log n),因为Python有一个非常快速的列表排序(list.sort),可能比该文章的方法中必要的线性时间操作更快,应该是非常的O(n)随机字符串的特殊推定和小字母表(典型的DNA基因组分析).我在Gog 2011中读到,我的算法的最坏情况O(n log n)实际上比许多O(n)算法更快,不能使用CPU内存缓存.
如果文本包含8 kB长的重复字符串,则基于grow_chains的另一个答案中的代码比问题中的原始示例慢19倍.长篇文章不是典型的古典文学,但它们经常出现在例如"独立"的学校作品集中.该计划不应该冻结它.
我编写了一个示例,并使用相同的Python 2.7,3.3 - 3.6 代码进行测试.
将算法翻译成Python:
from itertools import imap, izip, starmap, tee
from os.path import commonprefix
def pairwise(iterable): # itertools recipe
a, b = tee(iterable)
next(b, None)
return izip(a, b)
def longest_duplicate_small(data):
suffixes = sorted(data[i:] for i in xrange(len(data))) # O(n*n) in memory
return max(imap(commonprefix, pairwise(suffixes)), key=len)
Run Code Online (Sandbox Code Playgroud)
buffer()
允许在不复制的情况下获取子字符串:
def longest_duplicate_buffer(data):
n = len(data)
sa = sorted(xrange(n), key=lambda i: buffer(data, i)) # suffix array
def lcp_item(i, j): # find longest common prefix array item
start = i
while i < n and data[i] == data[i + j - start]:
i += 1
return i - start, start
size, start = max(starmap(lcp_item, pairwise(sa)), key=lambda x: x[0])
return data[start:start + size]
Run Code Online (Sandbox Code Playgroud)
在我的机器上需要 5 秒才能完成iliad.mb.txt
。
原则上,使用由lcp 数组增强的后缀数组可以在 O(n) 时间和 O(n) 内存中找到重复项。
注意:*_memoryview()
已被*_buffer()
版本弃用
内存效率更高的版本(与longest_duplicate_small()相比):
def cmp_memoryview(a, b):
for x, y in izip(a, b):
if x < y:
return -1
elif x > y:
return 1
return cmp(len(a), len(b))
def common_prefix_memoryview((a, b)):
for i, (x, y) in enumerate(izip(a, b)):
if x != y:
return a[:i]
return a if len(a) < len(b) else b
def longest_duplicate(data):
mv = memoryview(data)
suffixes = sorted((mv[i:] for i in xrange(len(mv))), cmp=cmp_memoryview)
result = max(imap(common_prefix_memoryview, pairwise(suffixes)), key=len)
return result.tobytes()
Run Code Online (Sandbox Code Playgroud)
在我的机器上需要 17 秒iliad.mb.txt
。结果是:
对此,其余的亚该亚人同声表示尊重 祭司并接受了他所提供的赎金;但阿伽门农却并非如此, 那人对他恶狠狠地说话,粗鲁地把他打发走。
我必须定义自定义函数来比较memoryview
对象,因为memoryview
比较要么在 Python 3 中引发异常,要么在 Python 2 中产生错误结果:
On this the rest of the Achaeans with one voice were for respecting the priest and taking the ransom that he offered; but not so Agamemnon, who spoke fiercely to him and sent him roughly away.
相关问题:
主要问题似乎是 python 通过复制进行切片: /sf/answers/400544791/
您必须使用内存视图来获取引用而不是副本。当我这样做时,程序在idx.sort
非常快)。
我相信只要做一点工作,你就能让剩下的工作顺利进行。
编辑:
上述更改不能作为直接替代,因为其cmp
工作方式与strcmp
. 例如,尝试以下 C 代码:
#include <stdio.h>
#include <string.h>
int main() {
char* test1 = "ovided by The Internet Classics Archive";
char* test2 = "rovided by The Internet Classics Archive.";
printf("%d\n", strcmp(test1, test2));
}
Run Code Online (Sandbox Code Playgroud)
并将结果与此 python 进行比较:
test1 = "ovided by The Internet Classics Archive";
test2 = "rovided by The Internet Classics Archive."
print(cmp(test1, test2))
Run Code Online (Sandbox Code Playgroud)
C 代码-3
在我的机器上打印,而 python 版本则打印-1
。看起来示例C
代码正在滥用返回值(毕竟strcmp
它被使用了)。qsort
我找不到任何关于何时strcmp
返回除 以外的内容的文档[-1, 0, 1]
,但在原始代码中添加 aprintf
显示pstrcmp
了许多超出该范围的值(3、-31、5 是前 3 个值)。
为了确保这-3
不是一些错误代码,如果我们反转 test1 和 test2,我们将得到3
.
编辑:
上面是一些有趣的琐事,但在影响任一代码块方面实际上并不正确。当我关闭笔记本电脑并离开 Wi-Fi 区域时,我意识到了这一点……真的应该在点击之前仔细检查所有内容Save
。
FWIW,cmp
最肯定适用于memoryview
对象(-1
按预期打印):
print(cmp(memoryview(test1), memoryview(test2)))
Run Code Online (Sandbox Code Playgroud)
我不确定为什么代码没有按预期工作。在我的机器上打印出的列表看起来不符合预期。我会研究这个问题并尝试找到更好的解决方案,而不是抓住救命稻草。
归档时间: |
|
查看次数: |
4811 次 |
最近记录: |