使用OpenCV裁剪黑色边缘

Gqq*_*big 34 opencv image-processing

我认为这应该是一个非常简单的问题,但我无法找到解决方案或有效的搜索关键字.

我只是有这个形象.

原始图像

黑色边缘是无用的,所以我想剪切它们,只留下Windows图标(和蓝色背景).

我不想计算Windows图标的坐标和大小.GIMP和Photoshop有一些autocrop功能.OpenCV没有?

Abi*_*n K 49

我不确定你的所有图像都是这样的.但是对于这个图像,下面是一个简单的python-opencv代码来裁剪它.

第一个导入库:

import cv2
import numpy as np
Run Code Online (Sandbox Code Playgroud)

读取图像,将其转换为灰度,并在二进制图像中生成阈值1.

img = cv2.imread('sofwin.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
Run Code Online (Sandbox Code Playgroud)

现在找到它的轮廓.将只有一个对象,因此找到它的边界矩形.

contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
Run Code Online (Sandbox Code Playgroud)

现在裁剪图像,并将其保存到另一个文件中.

crop = img[y:y+h,x:x+w]
cv2.imwrite('sofwinres.png',crop)
Run Code Online (Sandbox Code Playgroud)

结果如下:

在此输入图像描述

  • @Abid,非常感谢,先生.它对我有用,底部只有一个黑色边缘.对于**OpenCV 3**,代码会略有变化:`contours,hierarchy,_ = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)`:) (3认同)
  • +1很好的答案.是的,@ LoveRight,这正是他的意思.另一种处理这个问题的方法是[在这里讨论](http://stackoverflow.com/a/10317919/176769). (2认同)

Nic*_*len 11

我认为这个答案更简洁:

def crop(image):
    y_nonzero, x_nonzero, _ = np.nonzero(image)
    return image[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero):np.max(x_nonzero)]
Run Code Online (Sandbox Code Playgroud)

  • 如果边缘不是完全黑色,而是在某些地方呈深灰色(例如,在从图像到边缘的过渡附近的 jpg 图像),您可以使用阈值“th”,例如 20 和“y_nonzero, x_nonzero, _ = np.nonzero” (图像>th)` (3认同)
  • 不确定您的图像使用什么库,但对于使用 PIL 的任何人,最后一行可以更改如下:`return image.crop((np.min(x_nonzero), np.min(y_nonzero), np.max (x_nonzero), np.max(y_nonzero)))` -- 感谢您提供简洁的解决方案! (2认同)
  • 非常适合我的需要,比其他提交的方法更可靠 (2认同)

fvi*_*tor 9

import numpy as np

def autocrop(image, threshold=0):
    """Crops any edges below or equal to threshold

    Crops blank image to 1x1.

    Returns cropped image.

    """
    if len(image.shape) == 3:
        flatImage = np.max(image, 2)
    else:
        flatImage = image
    assert len(flatImage.shape) == 2

    rows = np.where(np.max(flatImage, 0) > threshold)[0]
    if rows.size:
        cols = np.where(np.max(flatImage, 1) > threshold)[0]
        image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
    else:
        image = image[:1, :1]

    return image
Run Code Online (Sandbox Code Playgroud)


小智 7

好的,为了完整起见,我实现了上面的每个建议,添加了递归算法的迭代版本(一旦更正)并进行了一组性能测试。

TLDR:递归可能是一般情况下最好的(但使用下面的那个——OP 有几个错误),而自动裁剪最适合您期望几乎为空的图像。

一般发现: 1. 上面的递归算法有几个 off-by-1 错误。修正版如下。2. cv2.findContours 函数在处理非矩形图像时存在问题,实际上在各种场景下甚至会修剪一些图像。我添加了一个使用 cv2.CHAIN_APPROX_NONE 的版本来查看它是否有帮助(它没有帮助)。3. autocrop 实现对于稀疏图像很好,但对于密集图像很差,递归/迭代算法的逆。

import numpy as np
import cv2

def trim_recursive(frame):
  if frame.shape[0] == 0:
    return np.zeros((0,0,3))

  # crop top
  if not np.sum(frame[0]):
    return trim_recursive(frame[1:])
  # crop bottom
  elif not np.sum(frame[-1]):
    return trim_recursive(frame[:-1])
  # crop left
  elif not np.sum(frame[:, 0]):
    return trim_recursive(frame[:, 1:])
    # crop right
  elif not np.sum(frame[:, -1]):
    return trim_recursive(frame[:, :-1])
  return frame

def trim_contours(frame):
  gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
  _,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
  _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  if len(contours) == 0:
    return np.zeros((0,0,3))
  cnt = contours[0]
  x, y, w, h = cv2.boundingRect(cnt)
  crop = frame[y:y + h, x:x + w]
  return crop

def trim_contours_exact(frame):
  gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
  _,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
  _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  if len(contours) == 0:
    return np.zeros((0,0,3))
  cnt = contours[0]
  x, y, w, h = cv2.boundingRect(cnt)
  crop = frame[y:y + h, x:x + w]
  return crop

def trim_iterative(frame):
  for start_y in range(1, frame.shape[0]):
    if np.sum(frame[:start_y]) > 0:
      start_y -= 1
      break
  if start_y == frame.shape[0]:
    if len(frame.shape) == 2:
      return np.zeros((0,0))
    else:
      return np.zeros((0,0,0))
  for trim_bottom in range(1, frame.shape[0]):
    if np.sum(frame[-trim_bottom:]) > 0:
      break

  for start_x in range(1, frame.shape[1]):
    if np.sum(frame[:, :start_x]) > 0:
      start_x -= 1
      break
  for trim_right in range(1, frame.shape[1]):
    if np.sum(frame[:, -trim_right:]) > 0:
      break

  end_y = frame.shape[0] - trim_bottom + 1
  end_x = frame.shape[1] - trim_right + 1

  # print('iterative cropping x:{}, w:{}, y:{}, h:{}'.format(start_x, end_x - start_x, start_y, end_y - start_y))
  return frame[start_y:end_y, start_x:end_x]

def autocrop(image, threshold=0):
  """Crops any edges below or equal to threshold

  Crops blank image to 1x1.

  Returns cropped image.

  """
  if len(image.shape) == 3:
    flatImage = np.max(image, 2)
  else:
    flatImage = image
  assert len(flatImage.shape) == 2

  rows = np.where(np.max(flatImage, 0) > threshold)[0]
  if rows.size:
    cols = np.where(np.max(flatImage, 1) > threshold)[0]
    image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
  else:
    image = image[:1, :1]

  return image
Run Code Online (Sandbox Code Playgroud)

然后为了测试它,我做了这个简单的函数:

import datetime
import numpy as np
import random

ITERATIONS = 10000

def test_image(img):
  orig_shape = img.shape
  print ('original shape: {}'.format(orig_shape))
  start_time = datetime.datetime.now()
  for i in range(ITERATIONS):
    recursive_img = trim_recursive(img)
  print ('recursive shape: {}, took {} seconds'.format(recursive_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
  start_time = datetime.datetime.now()
  for i in range(ITERATIONS):
    contour_img = trim_contours(img)
  print ('contour shape: {}, took {} seconds'.format(contour_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
  start_time = datetime.datetime.now()
  for i in range(ITERATIONS):
    exact_contour_img = trim_contours(img)
  print ('exact contour shape: {}, took {} seconds'.format(exact_contour_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
  start_time = datetime.datetime.now()
  for i in range(ITERATIONS):
    iterative_img = trim_iterative(img)
  print ('iterative shape: {}, took {} seconds'.format(iterative_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
  start_time = datetime.datetime.now()
  for i in range(ITERATIONS):
    auto_img = autocrop(img)
  print ('autocrop shape: {}, took {} seconds'.format(auto_img.shape, (datetime.datetime.now()-start_time).total_seconds()))


def main():
  orig_shape = (10,10,3)

  print('Empty image--should be 0x0x3')
  zero_img = np.zeros(orig_shape, dtype='uint8')
  test_image(zero_img)

  print('Small image--should be 1x1x3')
  small_img = np.zeros(orig_shape, dtype='uint8')
  small_img[3,3] = 1
  test_image(small_img)

  print('Medium image--should be 3x7x3')
  med_img = np.zeros(orig_shape, dtype='uint8')
  med_img[5:8, 2:9] = 1
  test_image(med_img)

  print('Random image--should be full image: 100x100')
  lg_img = np.zeros((100,100,3), dtype='uint8')
  for y in range (100):
    for x in range(100):
      lg_img[y,x, 0] = random.randint(0,255)
      lg_img[y, x, 1] = random.randint(0, 255)
      lg_img[y, x, 2] = random.randint(0, 255)
  test_image(lg_img)

main()
Run Code Online (Sandbox Code Playgroud)

......结果......

Empty image--should be 0x0x3
original shape: (10, 10, 3)
recursive shape: (0, 0, 3), took 0.295851 seconds
contour shape: (0, 0, 3), took 0.048656 seconds
exact contour shape: (0, 0, 3), took 0.046273 seconds
iterative shape: (0, 0, 3), took 1.742498 seconds
autocrop shape: (1, 1, 3), took 0.093347 seconds
Small image--should be 1x1x3
original shape: (10, 10, 3)
recursive shape: (1, 1, 3), took 1.342977 seconds
contour shape: (0, 0, 3), took 0.048919 seconds
exact contour shape: (0, 0, 3), took 0.04683 seconds
iterative shape: (1, 1, 3), took 1.084258 seconds
autocrop shape: (1, 1, 3), took 0.140886 seconds
Medium image--should be 3x7x3
original shape: (10, 10, 3)
recursive shape: (3, 7, 3), took 0.610821 seconds
contour shape: (0, 0, 3), took 0.047263 seconds
exact contour shape: (0, 0, 3), took 0.046342 seconds
iterative shape: (3, 7, 3), took 0.696778 seconds
autocrop shape: (3, 7, 3), took 0.14493 seconds
Random image--should be full image: 100x100
original shape: (100, 100, 3)
recursive shape: (100, 100, 3), took 0.131619 seconds
contour shape: (98, 98, 3), took 0.285515 seconds
exact contour shape: (98, 98, 3), took 0.288365 seconds
iterative shape: (100, 100, 3), took 0.251708 seconds
autocrop shape: (100, 100, 3), took 1.280476 seconds
Run Code Online (Sandbox Code Playgroud)