big*_*bug 661 python nan dataframe pandas
我有一个DataFrame:
>>> df
STK_ID EPS cash
STK_ID RPT_Date
601166 20111231 601166 NaN NaN
600036 20111231 600036 NaN 12
600016 20111231 600016 4.3 NaN
601009 20111231 601009 NaN NaN
601939 20111231 601939 2.5 NaN
000001 20111231 000001 NaN NaN
Run Code Online (Sandbox Code Playgroud)
然后我只想要那些EPS不是NaN,df.drop(....)即将返回数据帧的记录,如下所示:
STK_ID EPS cash
STK_ID RPT_Date
600016 20111231 600016 4.3 NaN
601939 20111231 601939 2.5 NaN
Run Code Online (Sandbox Code Playgroud)
我怎么做?
Ama*_*man 823
这个问题已经解决,但......
......还考虑了Wouter在其原始评论中提出的解决方案.处理丢失数据的能力,包括dropna(),明确地内置到pandas中.除了手动改进的性能之外,这些功能还提供了许多可能有用的选项.
In [24]: df = pd.DataFrame(np.random.randn(10,3))
In [25]: df.iloc[::2,0] = np.nan; df.iloc[::4,1] = np.nan; df.iloc[::3,2] = np.nan;
In [26]: df
Out[26]:
0 1 2
0 NaN NaN NaN
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
Run Code Online (Sandbox Code Playgroud)
In [27]: df.dropna() #drop all rows that have any NaN values
Out[27]:
0 1 2
1 2.677677 -1.466923 -0.750366
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
Run Code Online (Sandbox Code Playgroud)
In [28]: df.dropna(how='all') #drop only if ALL columns are NaN
Out[28]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
Run Code Online (Sandbox Code Playgroud)
In [29]: df.dropna(thresh=2) #Drop row if it does not have at least two values that are **not** NaN
Out[29]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
Run Code Online (Sandbox Code Playgroud)
In [30]: df.dropna(subset=[1]) #Drop only if NaN in specific column (as asked in the question)
Out[30]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
Run Code Online (Sandbox Code Playgroud)
还有其他选项(请参阅http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html上的文档),包括删除列而不是行.
非常方便!
eum*_*iro 523
不要drop.就拿行,其中EPS是有限的:
import numpy as np
df = df[np.isfinite(df['EPS'])]
Run Code Online (Sandbox Code Playgroud)
小智 110
我知道这已经得到了解答,但仅仅是为了纯粹的熊猫解决这个具体问题的方法,而不是阿曼的一般描述(这很精彩),以防其他人发生这种情况:
import pandas as pd
df = df[pd.notnull(df['EPS'])]
Run Code Online (Sandbox Code Playgroud)
Joe*_*Joe 46
你可以用这个:
df.dropna(subset=['EPS'], how='all', inplace=True)
Run Code Online (Sandbox Code Playgroud)
Gil*_*gio 30
最简单的解决方案:
filtered_df = df[df['EPS'].notnull()]
Run Code Online (Sandbox Code Playgroud)
上面的解决方案比使用np.isfinite()更好
cs9*_*s95 30
如何删除某列中值为 NaN 的 Pandas DataFrame 行
这是一个老问题,已经被打死了,但我相信在这个线程上有一些更有用的信息。如果您正在寻找以下任何问题的答案,请继续阅读:
DataFrame.dropna: 用法和例子已经有人说这df.dropna是从 DataFrames 中删除 NaN 的规范方法,但是没有什么比一些视觉提示可以帮助的了。
# Setup
df = pd.DataFrame({
'A': [np.nan, 2, 3, 4],
'B': [np.nan, np.nan, 2, 3],
'C': [np.nan]*3 + [3]})
df
A B C
0 NaN NaN NaN
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Run Code Online (Sandbox Code Playgroud)
以下是最重要的参数及其工作原理的详细信息,以常见问题解答格式排列。
这就是how=...论证派上用场的地方。它可以是其中之一
'any' (默认)- 如果至少一列包含 NaN,则删除行'all' - 仅当所有列都有 NaN 时才删除行<!_ ->
# Removes all but the last row since there are no NaNs
df.dropna()
A B C
3 4.0 3.0 3.0
# Removes the first row only
df.dropna(how='all')
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Run Code Online (Sandbox Code Playgroud)
注意
如果您只想查看哪些行为空(IOW,如果您想要行的布尔掩码),请使用isna:Run Code Online (Sandbox Code Playgroud)df.isna() A B C 0 True True True 1 False True True 2 False False True 3 False False False df.isna().any(axis=1) 0 True 1 True 2 True 3 False dtype: bool要获得此结果的反转,请
notna改用。
这是subset=[...]参数的一个用例。
指定一个列(或带有 的索引axis=1)的列表,以告诉 Pandasaxis=1在删除行(或带有axis=1.
# Drop all rows with NaNs in A
df.dropna(subset=['A'])
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
# Drop all rows with NaNs in A OR B
df.dropna(subset=['A', 'B'])
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Run Code Online (Sandbox Code Playgroud)
这是thresh=...参数的一个用例。将非空值的最小数量指定为整数。
df.dropna(thresh=1)
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
df.dropna(thresh=2)
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
df.dropna(thresh=3)
A B C
3 4.0 3.0 3.0
Run Code Online (Sandbox Code Playgroud)
这里要注意的是,您需要指定要保留多少个非空值,而不是要删除多少个 NULL 值。这是新用户的痛点。
幸运的是,修复很简单:如果您有 NULL 值的计数,只需从列大小中减去它即可获得该函数的正确 thresh 参数。
required_min_null_values_to_drop = 2 # drop rows with at least 2 NaN
df.dropna(thresh=df.shape[1] - required_min_null_values_to_drop + 1)
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Run Code Online (Sandbox Code Playgroud)
使用axis=...参数,它可以是axis=0或axis=1。
告诉函数是要删除行 ( axis=0) 还是删除列 ( axis=1)。
df.dropna()
A B C
3 4.0 3.0 3.0
# All columns have rows, so the result is empty.
df.dropna(axis=1)
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]
# Here's a different example requiring the column to have all NaN rows
# to be dropped. In this case no columns satisfy the condition.
df.dropna(axis=1, how='all')
A B C
0 NaN NaN NaN
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
# Here's a different example requiring a column to have at least 2 NON-NULL
# values. Column C has less than 2 NON-NULL values, so it should be dropped.
df.dropna(axis=1, thresh=2)
A B
0 NaN NaN
1 2.0 NaN
2 3.0 2.0
3 4.0 3.0
Run Code Online (Sandbox Code Playgroud)
dropna,就像 Pandas API 中的大多数其他函数一样,返回一个新的 DataFrame(带有更改的原始副本)作为结果,因此如果您想查看更改,您应该将其分配回来。
df.dropna(...) # wrong
df.dropna(..., inplace=True) # right, but not recommended
df = df.dropna(...) # right
Run Code Online (Sandbox Code Playgroud)
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
Run Code Online (Sandbox Code Playgroud)DataFrame.dropna( self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Ant*_*pov 21
你可以使用datan方法notnull或isnull的反转,或numpy.isnan:
In [332]: df[df.EPS.notnull()]
Out[332]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
In [334]: df[~df.EPS.isnull()]
Out[334]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
In [347]: df[~np.isnan(df.EPS)]
Out[347]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
Run Code Online (Sandbox Code Playgroud)
Nur*_*aaz 11
简单方法
df.dropna(subset=['EPS'],inplace=True)
来源:https : //pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html
Max*_*axU 10
另一个使用以下事实的解决方案np.nan != np.nan:
In [149]: df.query("EPS == EPS")
Out[149]:
STK_ID EPS cash
STK_ID RPT_Date
600016 20111231 600016 4.3 NaN
601939 20111231 601939 2.5 NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
805049 次 |
| 最近记录: |