Gil*_*lad 5 matlab image-processing
function [ d ] = hcompare_KL( h1,h2 )
%This routine evaluates the Kullback-Leibler (KL) distance between histograms.
% Input: h1, h2 - histograms
% Output: d – the distance between the histograms.
% Method: KL is defined as:
% Note, KL is not symmetric, so compute both sides.
% Take care not to divide by zero or log zero: disregard entries of the sum for which with H2(i) == 0.
temp = sum(h1 .* log(h1 ./ h2));
temp( isinf(temp) ) = 0; % this resloves where h1(i) == 0
d1 = sum(temp);
temp = sum(h2 .* log(h2 ./ h1)); % other direction of compare since it's not symetric
temp( isinf(temp) ) = 0;
d2 = sum(temp);
d = d1 + d2;
end
Run Code Online (Sandbox Code Playgroud)
我的问题是每当h1(i)或h2(i)== 0我得到的inf是预期的.但是在KL距离中我假设每当h1或h2 = 0时返回0我怎么能不使用循环呢?
为了避免在任何计数为 0 时出现问题,我建议您创建一个标记“良好”数据点的索引:
%# you may want to do some input testing, such as whether h1 and h2 are
%# of the same size
%# preassign the output
d = zeros(size(h1));
%# create an index of the "good" data points
goodIdx = h1>0 & h2>0; %# bin counts <0 are not good, either
d1 = sum(h1(goodIdx) .* log(h1(goodIdx) . /h2(goodIdx)));
d2 = sum(h2(goodIdx) .* log(h2(goodIdx) . /h1(goodIdx)));
%# overwrite d only where we have actual data
%# the rest remains zero
d(goodIdx) = d1 + d2;
Run Code Online (Sandbox Code Playgroud)