我正在尝试使用基于Shaffer,2004的逻辑曝光方法运行嵌套生存模型.我有一系列参数,希望比较所有可能的模型,然后使用收缩率估算模型平均参数,如Burnham和Anderson,但是,我无法弄清楚如何估算收缩调整参数的置信区间.
是否可以估算使用收缩估计的模型平均参数的置信区间?我可以使用model.average $ coef.shrinkage轻松提取模型平均参数的平均估计值,但不清楚如何获得相应的置信区间.
感谢任何帮助.我正在使用MuMIn包,因为我在AICcmodavg上遇到有关链接功能的错误.
下面是我正在使用的代码的简化版本:
library(MuMIn)
# Logistical Exposure Link Function
# See Shaffer, T. 2004. A unifying approach to analyzing nest success.
# Auk 121(2): 526-540.
logexp <- function(days = 1)
{
require(MASS)
linkfun <- function(mu) qlogis(mu^(1/days))
linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta) days * plogis(eta)^(days-1) *
.Call("logit_mu_eta", eta, PACKAGE = "stats")
valideta <- function(eta) TRUE
link <- paste("logexp(", days, ")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,
mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")
}
# randomly generate data
nest.data <- data.frame(egg=rep(1,100), chick=runif(100), exposure=trunc(rnorm(100,113,10)), density=rnorm(100,0,1), height=rnorm(100,0,1))
nest.data$chick[nest.data$chick<=0.5] <- 0
nest.data$chick[nest.data$chick!=0] <- 1
# run global logistic exposure model
glm.logexp <- glm(chick/egg ~ density * height, family=binomial(logexp(days=nest.data$exposure)), data=nest.data)
# evaluate all possible models
model.set <- dredge(glm.logexp)
# model average 95% confidence set and estimate parameters using shrinkage
mod.avg <- model.avg(model.set, beta=TRUE)
(mod.avg$coef.shrinkage)
Run Code Online (Sandbox Code Playgroud)
关于如何提取/生成相应置信区间的任何想法?
谢谢艾米
经过一段时间的思考后,我根据 Lukacs, PM, Burnham, KP, & Anderson, DR (2009) 中的方程 5 提出了以下解决方案。模型选择偏差和 Freedman\xe2\x80\x99s 悖论。统计数学研究所年鉴,62(1), 117\xe2\x80\x93125。任何对其有效性的评论将不胜感激。
\n\n代码继承上面的代码:
\n\n# MuMIn generated shrinkage estimate \n shrinkage.coef <- mod.avg$coef.shrinkage \n\n# beta parameters for each variable/model combination\ncoef.array <- mod.avg$coefArray\n coef.array <- replace(coef.array, is.na(coef.array), 0) # replace NAs with zeros\n\n# generate empty dataframe for estimates\nshrinkage.estimates <- data.frame(shrinkage.coef,variance=NA)\n\n# calculate shrinkage-adjusted variance based on Lukacs et al, 2009\nfor(i in 1:dim(coef.array)[3]){\n input <- data.frame(coef.array[,,i],weight=model.set$weight)\n\n variance <- rep(NA,dim(input)[2])\n for (j in 1:dim(input)[2]){\n variance[j] <- input$weight[j] * (input$Std..Err[j]^2 + (input$Estimate[j] - shrinkage.estimates$shrinkage.coef[i])^2)\n }\n shrinkage.estimates$variance[i] <- sum(variance) \n}\n\n# calculate confidence intervals\nshrinkage.estimates$lci <- shrinkage.estimates$shrinkage.coef - 1.96*shrinkage.estimates$variance\nshrinkage.estimates$uci <- shrinkage.estimates$shrinkage.coef + 1.96*shrinkage.estimates$variance\nRun Code Online (Sandbox Code Playgroud)\n