英特尔C++编译器编译递归decltype返回的速度非常慢

Sar*_*ran 7 c++ icc decltype variadic-templates c++11

我正在为由任意数量的char标签参数化的表达式编写模板.

给定参数列表,工厂函数返回不同类型的表达式,具体取决于是否存在相同类型的两个参数或它们是否唯一.

一个具体的例子:假设这A是一个"可标记的"对象,其operator()重载生成一个?Expression<...>.我们a, b, ...将其声明为标签LabelName<'a'>, LabelName<'b'>, ....然后A(a,b,c,d)会产生一个UniqueExpression<'a','b','c','d'>,而反过来A(a,c,b,c)会产生一个RepeatedExpression<'a','c','b','c'>.

为了实现这一点,我不得不?Expressionauto和定义工厂函数decltype.此外,decltype必须级联到另一个,decltype直到元程序完成通过参数的递归并且最终决定返回类型.作为一个例子,我已经为工厂方法隔离了一个相当小的代码.

template <typename... T> struct TypeList { };
template <char C> struct LabelName { };

template <typename... T> class UniqueExpression
{
    // Contains implementation details in actual code
};

template <typename... T> class RepeatedExpression
{
    // Contains implementation details in actual code
};

class ExpressionFactory {
private:
    template <char _C, typename... T, typename... _T>
    static UniqueExpression<T...>
    _do_build(TypeList<T...>,
              TypeList<LabelName<_C>>,
              TypeList<>,
              TypeList<_T...>)
    {
        return UniqueExpression<T...> ();
    }

    template <char _C, typename... T, typename... _T1, typename... _T2, typename... _T3>
    static RepeatedExpression<T...>
    _do_build(TypeList<T...>,
              TypeList<LabelName<_C>, _T1...>, 
              TypeList<LabelName<_C>, _T2...>,
              TypeList<_T3...>)

    {
        return RepeatedExpression<T...> ();
    }

    template <char _C1, char _C2, typename... T, typename... _T1, typename... _T2, typename... _T3>
    static auto
    _do_build(TypeList<T...>,
              TypeList<LabelName<_C1>, _T1...>, 
              TypeList<LabelName<_C2>, _T2...>,
              TypeList<_T3...>)
    -> decltype(_do_build(TypeList<T...>(),
                          TypeList<LabelName<_C1>, _T1...>(),
                          TypeList<_T2...>(),
                          TypeList<_T3..., LabelName<_C2>>()))
    {
        return _do_build(TypeList<T...>(),
                         TypeList<LabelName<_C1>, _T1...>(),
                         TypeList<_T2...>(),
                         TypeList<_T3..., LabelName<_C2>>());
    }

    template <char _C1, char _C2, typename... T, typename... _T1, typename... _T2>
    static auto
    _do_build(TypeList<T...>,
              TypeList<LabelName<_C1>, LabelName<_C2>, _T1...>, 
              TypeList<>,
              TypeList<LabelName<_C2>, _T2...>)
    -> decltype(_do_build(TypeList<T...>(),
                          TypeList<LabelName<_C2>, _T1...>(),
                          TypeList<_T2...>(),
                          TypeList<>()))
    {
        return _do_build(TypeList<T...>(),
                         TypeList<LabelName<_C2>, _T1...>(),
                         TypeList<_T2...>(),
                         TypeList<>());
    }

public:
    template <char C, typename... T>
    static auto
    build_expression(LabelName<C>, T...)
    -> decltype(_do_build(TypeList<LabelName<C>, T...>(),
                          TypeList<LabelName<C>, T...>(),
                          TypeList<T...>(),
                          TypeList<>()))
    {
        return _do_build(TypeList<LabelName<C>, T...>(),
                         TypeList<LabelName<C>, T...>(),
                         TypeList<T...>(),
                         TypeList<>());
    }
};
Run Code Online (Sandbox Code Playgroud)

可以像这样在程序operator()中调用工厂:(在实际程序中有另一个带有重载的类调用工厂)

int main()
{
    LabelName<'a'> a;
    LabelName<'b'> b;
    ...
    LabelName<'j'> j;

    auto expr = ExpressionFactory::build_expression(a,b,c,d,e,f,g,h,i,j);

    // Perhaps do some cool stuff with expr

    return 0;
}
Run Code Online (Sandbox Code Playgroud)

上面的代码按预期工作,并由GCC和英特尔编译器正确编译.现在,我明白编译器会花费更多的时间来执行递归模板推导,因为我增加了我使用的标签数量.

在我的计算机上,如果build_expression用一个参数调用,那么GCC 4.7.1平均需要大约0.26秒来编译.对于五个参数,编译时间扩展到大约0.29秒,对于十个参数,编译时间扩展到0.62秒.这一切都非常合理.

这个故事与英特尔编译器截然不同.ICPC 13.0.1在0.35秒内编译单参数代码,编译时间对于最多四个参数保持相当恒定.在五个参数中,编译时间最多为12秒,在六个参数下,它会在9600秒以上(即超过2小时40分钟)上升.不用说,我没有等到足以找出编译七参数版本需要多长时间.


立刻想到两个问题:

  • 特别知道英特尔编译器编译递归的速度慢decltype吗?

  • 有没有办法重写这个代码,以一种可能对编译器更友好的方式实现相同的效果?

Yak*_*ont 3

Here is a stab at it. Instead of doing pairwise comparisons of each of the elements, I sort the list of types, then use a brain-dead unique algorithm to see if there are any duplicates.

I implemented merge sort on types, because it was fun. Probably a naive bubble sort would work better on reasonable number of arguments. Note that a bit of work would allow us to do a merge sort on long lists, and specialize for bubble sorts (or even insertion sorts) on short lists. I'm not up for writing a template quicksort.

This gives me a compile time boolean that says if there are duplicates in the list. I can then use enable_if to pick which overload I'm going to use.

Note that your solution involved n^2 layers of template recursion, at each stage of which the return type requires evaluating the type of a 1 step simpler class, and then the type returned also requires the same! If the Intel compiler memoization fails, you are talking exponential amounts of work.

我用一些助手增强了你们的一些课程。我让你的LabelNames 继承自std::integral_constant,因此我可以轻松地在编译时访问它们的值。这使得排序代码变得更容易一些。我还公开了enum重复且唯一的返回值,以便我可以printf对结果进行简单的调试。

这项工作的大部分内容是编写合并排序——是否有我们可以使用的标准编译时类型排序?

#include <type_traits>
#include <iostream>

template <typename... T> struct TypeList { };

// NOTE THIS CHANGE:
template <char C> struct LabelName:std::integral_constant<char, C> {};

template <typename... T> class UniqueExpression
{
    // Contains implementation details in actual code
public:
  enum { is_unique = true };
};

template <typename... T> class RepeatedExpression
{
    // Contains implementation details in actual code
public:
  enum { is_unique = false };
};

// A compile time merge sort for types
// Split takes a TypeList<>, and sticks the even
// index types into Left and odd into Right
template<typename T>
struct Split;
template<>
struct Split<TypeList<>>
{
  typedef TypeList<> Left;
  typedef TypeList<> Right;
};
template<typename T>
struct Split<TypeList<T>>
{
  typedef TypeList<T> Left;
  typedef TypeList<> Right;
};

// Prepends First into the TypeList List.
template<typename First, typename List>
struct Prepend;
template<typename First, typename... ListContents>
struct Prepend<First,TypeList<ListContents...>>
{
  typedef TypeList<First, ListContents...> type;
};

template<typename First, typename Second, typename... Tail>
struct Split<TypeList<First, Second, Tail...>>
{
  typedef typename Prepend< First, typename Split<TypeList<Tail...>>::Left>::type Left;
  typedef typename Prepend< Second, typename Split<TypeList<Tail...>>::Right>::type Right;
};

// Merges the sorted TypeList<>s Left and Right to the end of TypeList<> MergeList
template< typename Left, typename Right, typename MergedList=TypeList<> >
struct Merge;
template<typename MergedList>
struct Merge< TypeList<>, TypeList<>, MergedList >
{
  typedef MergedList type;
};
template<typename L1, typename... Left, typename... Merged>
struct Merge< TypeList<L1, Left...>, TypeList<>, TypeList<Merged... >>
{
  typedef TypeList<Merged..., L1, Left...> type;
};
template<typename R1, typename... Right, typename... Merged>
struct Merge< TypeList<>, TypeList<R1, Right...>, TypeList<Merged...> >
{
  typedef TypeList<Merged..., R1, Right...> type;
};
template<typename L1, typename... Left, typename R1, typename... Right, typename... Merged>
struct Merge< TypeList<L1, Left...>, TypeList<R1, Right...>, TypeList<Merged...>>
{
  template<bool LeftIsSmaller, typename LeftList, typename RightList, typename MergedList>
  struct MergeHelper;

  template<typename FirstLeft, typename... LeftTail, typename FirstRight, typename... RightTail, typename... MergedElements>
  struct MergeHelper< true, TypeList<FirstLeft, LeftTail...>, TypeList<FirstRight, RightTail...>, TypeList<MergedElements...> >
  {
    typedef typename Merge< TypeList<LeftTail...>, TypeList< FirstRight, RightTail... >, TypeList< MergedElements..., FirstLeft > >::type type;
  };
  template<typename FirstLeft, typename... LeftTail, typename FirstRight, typename... RightTail, typename... MergedElements>
  struct MergeHelper< false, TypeList<FirstLeft, LeftTail...>, TypeList<FirstRight, RightTail...>, TypeList<MergedElements...> >
  {
    typedef typename Merge< TypeList<FirstLeft, LeftTail...>, TypeList<RightTail... >, TypeList< MergedElements..., FirstRight > >::type type;
  };

  typedef typename MergeHelper< (L1::value < R1::value), TypeList<L1, Left...>, TypeList<R1, Right...>, TypeList<Merged...> >::type type;
};

// Takes a TypeList<T...> and sorts it via a merge sort:
template<typename List>
struct MergeSort;
template<>
struct MergeSort<TypeList<>>
{
  typedef TypeList<> type;
};
template<typename T>
struct MergeSort<TypeList<T>>
{
  typedef TypeList<T> type;
};
template<typename First, typename Second, typename... T>
struct MergeSort<TypeList<First, Second, T...>>
{
  typedef Split<TypeList<First, Second, T...>> InitialSplit;
  typedef typename MergeSort< typename InitialSplit::Left >::type Left;
  typedef typename MergeSort< typename InitialSplit::Right >::type Right;
  typedef typename Merge< Left, Right >::type type;
};

// Sorts a TypeList<T..>:
template<typename List>
struct Sort: MergeSort<List> {};

// Checks sorted TypeList<T...> SortedList for adjacent duplicate types
// return value is in value
template<typename SortedList>
struct Unique;

template<> struct Unique< TypeList<> >:std::true_type {};
template<typename T> struct Unique< TypeList<T> >:std::true_type {};

template<typename First, typename Second, typename... Tail>
struct Unique< TypeList< First, Second, Tail... > >
{
  enum
  {
    value = (!std::is_same<First, Second>::value) &&
      Unique< TypeList<Second, Tail...> >::value
  };
};

// value is true iff there is a repeated type in Types...
template<typename... Types>
struct RepeatedType
{
  typedef TypeList<Types...> MyListOfTypes;

  typedef typename Sort< MyListOfTypes >::type MyListOfTypesSorted;
  enum
  {
    value = !Unique< MyListOfTypesSorted >::value
  };
};

// A struct that creates an rvalue trivial constructed type
// of any type requested.
struct ProduceRequestedType
{
  template<typename Result>
  operator Result() { return Result(); };
};

struct ExpressionFactory {
  template<typename... T>
  typename std::enable_if<
    !RepeatedType<T...>::value,
    UniqueExpression<T...>
  >::type
  build_expression(T...) const
  {
    return ProduceRequestedType();
  };
  template<typename... T>
  typename std::enable_if<
    RepeatedType<T...>::value,
    RepeatedExpression<T...>
  >::type
  build_expression(T...) const
  {
    return ProduceRequestedType();
  };
};

// Simple testing code for above:
int main()
{
  auto foo1 = ExpressionFactory().build_expression( LabelName<'a'>(), LabelName<'b'>(), LabelName<'a'>() );
  typedef decltype(foo1) foo1Type;
  if (foo1Type::is_unique)
    std::cout << "foo1 is unique\n";
  else
    std::cout << "foo1 is repeated\n";

  auto foo2 = ExpressionFactory().build_expression( LabelName<'q'>(), LabelName<'a'>(), LabelName<'b'>(), LabelName<'d'>(), LabelName<'t'>(), LabelName<'z'>() );
  typedef decltype(foo2) foo2Type;
  if (foo2Type::is_unique)
    std::cout << "foo2 is unique\n";
  else
    std::cout << "foo2 is repeated\n";
}
Run Code Online (Sandbox Code Playgroud)

另外,我想对您的代码进行批评:模板编程就是编程——您的类型名称相当于在函数中使用“i1”到“i9”作为整数变量。当做一些不平凡的事情时,给你的类型命名有意义的名字。

它如何在 Intel 上编译?