如何使用pyplot.bar绘制正误差条?

Lim*_*nce 13 python matplotlib bar-chart

我试图用正误差线和图中的最大值绘制4个平均值.

means   = [26.82,26.4,61.17,61.55]         # Mean Data 
stds    = [4.59,4.39,4.37,4.38]            # Standard deviation Data
peakval = ['26.82','26.4','61.17','61.55'] # String array of means

ind = np.arange(len(means))
width = 0.35
colours = ['red','blue','green','yellow']

pyplot.figure()
pyplot.title('Average Age')
for i in range(len(means)):
    pyplot.bar(ind[i],means[i],width,color=colours[i],align='center',yerr=stds[i],ecolor='k')
pyplot.ylabel('Age (years)')
pyplot.xticks(ind,('Young Male','Young Female','Elderly Male','Elderly Female'))

def autolabel(bars,peakval):
    for ii,bar in enumerate(bars):
        height = bars[ii]
        pyplot.text(ind[ii], height-5, '%s'% (peakval[ii]), ha='center', va='bottom')
autolabel(means,peakval)    
Run Code Online (Sandbox Code Playgroud)

但是我无法找出如何只绘制正误差条.所以我最终得到了这样一个图:

平均年龄

任何建议将不胜感激.

Bak*_*riu 15

如果我理解正确,你可以这样做:

import numpy as np
from matplotlib import pyplot

means   = [26.82,26.4,61.17,61.55]           # Mean Data 
stds    = [(0,0,0,0), [4.59,4.39,4.37,4.38]] # Standard deviation Data
peakval = ['26.82','26.4','61.17','61.55']   # String array of means

ind = np.arange(len(means))
width = 0.35
colours = ['red','blue','green','yellow']

pyplot.figure()
pyplot.title('Average Age')
pyplot.bar(ind, means, width, color=colours, align='center', yerr=stds, ecolor='k')
pyplot.ylabel('Age (years)')
pyplot.xticks(ind,('Young Male','Young Female','Elderly Male','Elderly Female'))

def autolabel(bars,peakval):
    for ii,bar in enumerate(bars):
        height = bars[ii]
        pyplot.text(ind[ii], height-5, '%s'% (peakval[ii]), ha='center', va='bottom')
autolabel(means,peakval) 
pyplot.show()
Run Code Online (Sandbox Code Playgroud)

结果:

在此输入图像描述

它的工作原理,因为你可以作为yerr一个2xN列表,代表着正面和负面的"补偿",看文档.