我想将以下csv导入为字符串而不是int64.Pandas read_csv自动将其转换为int64,但我需要将此列作为字符串.
ID
00013007854817840016671868
00013007854817840016749251
00013007854817840016754630
00013007854817840016781876
00013007854817840017028824
00013007854817840017963235
00013007854817840018860166
df = read_csv('sample.csv')
df.ID
>>
0 -9223372036854775808
1 -9223372036854775808
2 -9223372036854775808
3 -9223372036854775808
4 -9223372036854775808
5 -9223372036854775808
6 -9223372036854775808
Name: ID
Run Code Online (Sandbox Code Playgroud)
不幸的是使用转换器会产生相同的结
df = read_csv('sample.csv', converters={'ID': str})
df.ID
>>
0 -9223372036854775808
1 -9223372036854775808
2 -9223372036854775808
3 -9223372036854775808
4 -9223372036854775808
5 -9223372036854775808
6 -9223372036854775808
Name: ID
Run Code Online (Sandbox Code Playgroud)
Wes*_*ney 118
只想重申这将在pandas> = 0.9.1中起作用:
In [2]: read_csv('sample.csv', dtype={'ID': object})
Out[2]:
ID
0 00013007854817840016671868
1 00013007854817840016749251
2 00013007854817840016754630
3 00013007854817840016781876
4 00013007854817840017028824
5 00013007854817840017963235
6 00013007854817840018860166
Run Code Online (Sandbox Code Playgroud)
我正在创建一个关于检测整数溢出的问题.
编辑:请参阅此处的解决方案:https://github.com/pydata/pandas/issues/2247
spe*_*on2 18
这可能不是最优雅的方式,但它完成了工作.
In[1]: import numpy as np
In[2]: import pandas as pd
In[3]: df = pd.DataFrame(np.genfromtxt('/Users/spencerlyon2/Desktop/test.csv', dtype=str)[1:], columns=['ID'])
In[4]: df
Out[4]:
ID
0 00013007854817840016671868
1 00013007854817840016749251
2 00013007854817840016754630
3 00013007854817840016781876
4 00013007854817840017028824
5 00013007854817840017963235
6 00013007854817840018860166
Run Code Online (Sandbox Code Playgroud)
只需替换'/Users/spencerlyon2/Desktop/test.csv'
文件的路径即可
den*_*lov 13
从 pandas 1.0 开始,它变得更加简单。这会将列 'ID' 读取为 dtype 'string':
pd.read_csv('sample.csv',dtype={'ID':'string'})
Run Code Online (Sandbox Code Playgroud)
正如我们在本入门指南中所见,已经引入了 'string' dtype(在将字符串视为 dtype 'object' 之前)。