以下面的DataFrame为例,
In [83]:
df = pd.DataFrame({'A':[1,1,2,2],'B':[1,2,1,2],'values':np.arange(10,30,5)})
df
Out[83]:
A B values
0 1 1 10
1 1 2 15
2 2 1 20
3 2 2 25
Run Code Online (Sandbox Code Playgroud)
生成包含其中一列的数据聚合的新列的简单方法是什么?
例如,如果我总结values项目A
In [84]:
df.groupby('A').sum()['values']
Out[84]:
A
1 25
2 45
Name: values
Run Code Online (Sandbox Code Playgroud)
我怎样才能得到
A B values sum_values_A
0 1 1 10 25
1 1 2 15 25
2 2 1 20 45
3 2 2 25 45
Run Code Online (Sandbox Code Playgroud)
Wou*_*ire 36
In [20]: df = pd.DataFrame({'A':[1,1,2,2],'B':[1,2,1,2],'values':np.arange(10,30,5)})
In [21]: df
Out[21]:
A B values
0 1 1 10
1 1 2 15
2 2 1 20
3 2 2 25
In [22]: df['sum_values_A'] = df.groupby('A')['values'].transform(np.sum)
In [23]: df
Out[23]:
A B values sum_values_A
0 1 1 10 25
1 1 2 15 25
2 2 1 20 45
3 2 2 25 45
Run Code Online (Sandbox Code Playgroud)
我找到了一种使用方法join:
In [101]:
aggregated = df.groupby('A').sum()['values']
aggregated.name = 'sum_values_A'
df.join(aggregated,on='A')
Out[101]:
A B values sum_values_A
0 1 1 10 25
1 1 2 15 25
2 2 1 20 45
3 2 2 25 45
Run Code Online (Sandbox Code Playgroud)
有人有更简单的方法吗?