nac*_*cab 5 r plyr dataframe data.table
我有一个包含3组和3天的数据框:
set.seed(10)
dat <- data.frame(group=rep(c("g1","g2","g3"),each=3), day=rep(c(0,2,4),3), value=runif(9))
# group day value
# 1 g1 0 0.507478
# 2 g1 2 0.306769
# 3 g1 4 0.426908
# 4 g2 0 0.693102
# 5 g2 2 0.085136
# 6 g2 4 0.225437
# 7 g3 0 0.274531
# 8 g3 2 0.272305
# 9 g3 4 0.615829
Run Code Online (Sandbox Code Playgroud)
我想取log2并将每个值除以每组中的第0天值.我现在这样做的方法是通过计算中间步骤中的每一天组:
day_0 <- dat[dat$day==0, "value"]
day_2 <- dat[dat$day==2, "value"]
day_4 <- dat[dat$day==4, "value"]
res <- cbind(0, log2(day_2/day_0), log2(day_4/day_0))
rownames(res) <- c("g1","g2","g3")
colnames(res) <- c("day_0","log_ratio_day_2_day_0","log_ratio_day_4_day_0")
# day_0 log_ratio_day_2_day_0 log_ratio_day_4_day_0
# g1 0 -0.7261955 -0.249422
# g2 0 -3.0252272 -1.620346
# g3 0 -0.0117427 1.165564
Run Code Online (Sandbox Code Playgroud)
res没有中间步骤的正确计算方法是什么?
甲data.table用于编码优雅和存储器效率溶液
library(data.table)
DT <- data.table(dat)
# assign within DT by reference
DT[, new_value := log2(value / value[day == 0]), by = group]
Run Code Online (Sandbox Code Playgroud)
或者你可以使用joins与keys和by-without-by
DTb <- data.table(dat)
setkey(DTb, group)
# val0 contains just those records for day 0
val0 <- DTb[day==0]
# the i.value refers to value from the i argument
# which is in this case `val0` and thus the value for
# day = 0
DTb[val0, value := log2(value / i.value)]
Run Code Online (Sandbox Code Playgroud)
这两种解决方案都不要求您排序 day以确保value第一个(或任何特定的)元素.
i.语法的Docuementation
Run Code Online (Sandbox Code Playgroud)********************************************** ** ** ** CHANGES IN DATA.TABLE VERSION 1.7.10 ** ** ** ********************************************** NEW FEATURES o New function setcolorder() reorders the columns by name or by number, by reference with no copy. This is (almost) infinitely faster than DT[,neworder,with=FALSE]. o The prefix i. can now be used in j to refer to join inherited columns of i that are otherwise masked by columns in x with the same name.
您的朋友ddply来自该plyr包裹:
require(plyr)
> ddply(dat, .(group), mutate, new_value = log2(value / value[1]))
group day value new_value
1 g1 0 0.50747820 0.00000000
2 g1 2 0.30676851 -0.72619548
3 g1 4 0.42690767 -0.24942179
4 g2 0 0.69310208 0.00000000
5 g2 2 0.08513597 -3.02522716
6 g2 4 0.22543662 -1.62034599
7 g3 0 0.27453052 0.00000000
8 g3 2 0.27230507 -0.01174274
9 g3 4 0.61582931 1.16556397
Run Code Online (Sandbox Code Playgroud)