Ant*_*sky 24 math monads haskell applicative
在他的回答这个问题"类型类之间的区别MonadPlus
,Alternative
以及Monoid
?",爱德华Kmett说,
而且,即使
Applicative
是超级课程Monad
,你最终还是需要MonadPlus
上课,因为顺从Run Code Online (Sandbox Code Playgroud)empty <*> m = empty
并不足以证明这一点
Run Code Online (Sandbox Code Playgroud)empty >>= f = empty
因此声称某事物是一件事,
MonadPlus
比宣称事情要强Alternative
.
很明显,任何适用函子是不是一个单子是自动的一个例子Alternative
是不是MonadPlus
,但爱德华Kmett的回答意味着存在一个单子这是一个Alternative
,但不是一个MonadPlus
:它empty
和<|>
将满足Alternative
法律,1而不是MonadPlus
法律.2 我自己无法想出这样的例子; 有人知道吗?
1我无法找到一套规则的规范参考Alternative
,但是我将我认为它们的内容大概放在我对" 类型类的含义及其与其他类型的关系的混淆"这一问题的答案的中间.类"(搜索短语"正确的分配").我认为应该遵守的四项法律是:Alternative
<*>
: (f <|> g) <*> a = (f <*> a) <|> (g <*> a)
<*>
): empty <*> a = empty
fmap
): f <$> (a <|> b) = (f <$> a) <|> (f <$> b)
fmap
): f <$> empty = empty
我也很乐意接受一套更有用的Alternative
法律.
2我知道法律的含义有些含糊不清MonadPlus
; 我对使用左派或左派的答案感到满意,尽管我不喜欢前者.
And*_*ewC 24
您的答案的线索在HaskellWiki中关于您链接到的MonadPlus:
哪个规则?Martin&Gibbons选择Monoid,Left Zero和Left Distribution.这使得
[]
MonadPlus,但不是Maybe
或IO
.
所以根据你喜欢的选择,Maybe
不是MonadPlus(尽管有一个实例,它不满足左派分布).让我们证明它满足替代方案.
Maybe
是另类<*>
: (f <|> g) <*> a = (f <*> a) <|> (g <*> a)
案例1 f=Nothing
:
(Nothing <|> g) <*> a = (g) <*> a -- left identity <|>
= Nothing <|> (g <*> a) -- left identity <|>
= (Nothing <*> a) <|> (g <*> a) -- left failure <*>
Run Code Online (Sandbox Code Playgroud)
案例2 a=Nothing
:
(f <|> g) <*> Nothing = Nothing -- right failure <*>
= Nothing <|> Nothing -- left identity <|>
= (f <*> Nothing) <|> (g <*> Nothing) -- right failure <*>
Run Code Online (Sandbox Code Playgroud)
案例3: f=Just h, a = Just x
(Just h <|> g) <*> Just x = Just h <*> Just x -- left bias <|>
= Just (h x) -- success <*>
= Just (h x) <|> (g <*> Just x) -- left bias <|>
= (Just h <*> Just x) <|> (g <*> Just x) -- success <*>
Run Code Online (Sandbox Code Playgroud)
<*>
): empty <*> a = empty
这很容易,因为
Nothing <*> a = Nothing -- left failure <*>
Run Code Online (Sandbox Code Playgroud)
fmap
): f <$> (a <|> b) = (f <$> a) <|> (f <$> b)
情况1: a = Nothing
f <$> (Nothing <|> b) = f <$> b -- left identity <|>
= Nothing <|> (f <$> b) -- left identity <|>
= (f <$> Nothing) <|> (f <$> b) -- failure <$>
Run Code Online (Sandbox Code Playgroud)
案例2: a = Just x
f <$> (Just x <|> b) = f <$> Just x -- left bias <|>
= Just (f x) -- success <$>
= Just (f x) <|> (f <$> b) -- left bias <|>
= (f <$> Just x) <|> (f <$> b) -- success <$>
Run Code Online (Sandbox Code Playgroud)
fmap
): f <$> empty = empty
另一个容易的:
f <$> Nothing = Nothing -- failure <$>
Run Code Online (Sandbox Code Playgroud)
Maybe
不是MonadPlus让我们证明一下Maybe
不是MonadPlus 的断言:我们需要证明这mplus a b >>= k = mplus (a >>= k) (b >>= k)
并不总是成立.与以往一样,诀窍是使用一些绑定来隐藏非常不同的值:
a = Just False
b = Just True
k True = Just "Made it!"
k False = Nothing
Run Code Online (Sandbox Code Playgroud)
现在
mplus (Just False) (Just True) >>= k = Just False >>= k
= k False
= Nothing
Run Code Online (Sandbox Code Playgroud)
在这里,我使用绑定从胜利的下颚(>>=)
抓住失败(Nothing
)因为Just False
看起来像成功.
mplus (Just False >>= k) (Just True >>= k) = mplus (k False) (k True)
= mplus Nothing (Just "Made it!")
= Just "Made it!"
Run Code Online (Sandbox Code Playgroud)
这里故障(k False
)是早期计算的,所以被忽略了,我们"Made it!"
.
所以,mplus a b >>= k = Nothing
但是mplus (a >>= k) (b >>= k) = Just "Made it!"
.
你可以看一下这是我用>>=
打破的左偏mplus
了Maybe
.
万一你觉得我做得不够繁琐,我会证明我用过的身份:
首先
Nothing <|> c = c -- left identity <|>
Just d <|> c = Just d -- left bias <|>
Run Code Online (Sandbox Code Playgroud)
它来自实例声明
instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l
Run Code Online (Sandbox Code Playgroud)
其次
f <$> Nothing = Nothing -- failure <$>
f <$> Just x = Just (f x) -- success <$>
Run Code Online (Sandbox Code Playgroud)
它来自(<$>) = fmap
和
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)
Run Code Online (Sandbox Code Playgroud)
第三,其他三个需要更多的工作:
Nothing <*> c = Nothing -- left failure <*>
c <*> Nothing = Nothing -- right failure <*>
Just f <*> Just x = Just (f x) -- success <*>
Run Code Online (Sandbox Code Playgroud)
这来自定义
instance Applicative Maybe where
pure = return
(<*>) = ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 id
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }
instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= _ = Nothing
return = Just
Run Code Online (Sandbox Code Playgroud)
所以
mf <*> mx = ap mf mx
= liftM2 id mf mx
= do { f <- mf; x <- mx; return (id f x) }
= do { f <- mf; x <- mx; return (f x) }
= do { f <- mf; x <- mx; Just (f x) }
= mf >>= \f ->
mx >>= \x ->
Just (f x)
Run Code Online (Sandbox Code Playgroud)
所以如果mf
或者mx
什么都没有,结果也是Nothing
,而如果mf = Just f
和mx = Just x
,结果是Just (f x)