设计不可变,可打字的树木

Phi*_*ppe 5 functional-programming scala immutability

这是我一再遇到的设计问题.假设您正在构建编译器,如何在树中存储类型?

举一个简单ExprType层次,并假设PlusEquals多态(加上在短短布尔值||,例如).

trait Type
case object BoolType extends Type
case object IntType extends Type
case object Untyped extends Type

trait Expr { var tpe : Type = Untyped }

case class Var(id : String) extends Expr
case class Plus(l : Expr, r : Expr) extends Expr
case class Equals(l : Expr, r : Expr) extends Expr
// ...
Run Code Online (Sandbox Code Playgroud)

进一步假设我在构造表达式树时不知道标识符的类型,因此无法通过构造知道类型.现在典型的类型检查功能可能如下所示:

def typeCheck(env : Map[String,Type])(expr : Expr) : Expr = expr match {
  case Var(id) =>
    expr.tpe = env(id)
    expr

  case Plus(l,r) =>
    val tl = typeCheck(env)(l)
    val tr = typeCheck(env)(r)
    assert(tl == tr)
    expr.tpe = tl
    expr

  // etc.
}
Run Code Online (Sandbox Code Playgroud)

这写起来相当简单,但有两个主要问题:

  • Exprs是可变的.没人喜欢变异.
  • 无法区分键入和无类型表达式.我不能编写一个函数,其签名指定其参数必须是一个类型化的表达式.

所以我的问题如下.什么是好方法(我不敢说设计模式)来定义可能无类型的树,这样:

  1. 我只需要定义Expr一次层次结构.
  2. 类型和非类型树具有不同的类型,我可以选择使它们不兼容.

编辑:还有一个要求是它应该适用于具有无限且不可预测的类型数量的类型系统(case class ClassType(classID : String) extends Type例如,想想:).

Pth*_*ame 6

这是类型级编程的完美用例!

首先,我们需要一个类型级别,Option以便我们可以在类型级别None和类型级别的类型级别和类型树类型X方面表示非类型化树Some[X]:

// We are restricting our type-level option to
// only (potentially) hold subtypes of `Type`.
sealed trait IsTyped
sealed trait Untyped extends IsTyped
sealed trait Typed[T <: Type] extends IsTyped
Run Code Online (Sandbox Code Playgroud)

接下来,我们布置我们的类型系统层次结构:

sealed trait Type

// We can create complicated subhierarchies if we want.
sealed trait SimpleType extends Type
sealed trait CompoundType extends Type

sealed trait PrimitiveType extends Type
sealed trait UserType extends Type

// Declaring our types.
case object IntType extends SimpleType with PrimitiveType

case object BoolType extends SimpleType with PrimitiveType

// A type with unbounded attributes.
case class ClassType(classId: String) extends CompoundType with UserType

// A type that depends statically on another type.
case class ArrayType(elemType: Type) extends CompoundType with PrimitiveType
Run Code Online (Sandbox Code Playgroud)

现在,剩下的就是声明我们的表达式树:

sealed trait Expr[IT <: IsTyped] { val getType: Option[Type] }

// Our actual expression types.
case class Var[IT <: IsTyped](id: String, override val getType: Option[Type] = None) extends Expr[IT]

case class Plus[IT <: IsTyped](l: Expr[IT], r: Expr[IT], override val getType: Option[Type] = None) extends Expr[IT]

case class Equals[IT <: IsTyped](l: Expr[IT], r: Expr[IT], override val getType: Option[Type] = None) extends Expr[IT]

case class ArrayLiteral[IT](elems: List[Expr[_ :< IsTyped]], override val getType: Option[Type] = None) extends Expr[IT]
Run Code Online (Sandbox Code Playgroud)

编辑:

一个简单但完整的类型检查功能:

def typeCheck(expr: Expr[Untyped], env: Map[String, Type]): Option[Expr[Typed[_ :< Type]]] = expr match {
  case Var(id, None) if env isDefinedAt id => Var[Typed[_ <: Type]](id, Some(env(id)))
  case Plus(r, l, None) => for {
      lt <- typeCheck(l, env)
      IntType <- lt.getType
      rt <- typeCheck(r, env)
      IntType <- rt.getType
    } yield Plus[Typed[IntType]](lt, rt, Some(IntType))
  case Equals(r, l, None) => for {
      lt <- typeCheck(l, env)
      lType <- lt.getType
      rt <- typeCheck(r, env)
      rType <- rt.getType
      if rType == lType
    } yield Equals[Typed[BoolType]](lt, rt, Some(BoolType))
  case ArrayLiteral(elems, None) => {
    val elemst: List[Option[Expr[Typed[_ <: Type]]]] =
      elems map { typeCheck(_, env) }
    val elemType: Option[Type] = if (elemst.isEmpty) None else elemst map { elem =>
      elem map { _.getType }
    } reduce { (elemType1, elemType2) =>
      for {
        et1 <- elemType1
        et2 <- elemType2
        if et1 == et2
      } yield et1
    }
    if (elemst forall { _.isDefined }) elemType map { et =>
      ArrayLiteral[Typed[ArrayType]](elemst map { _.get }, ArrayType(et))
    } else None
  }
  case _ => None
}
Run Code Online (Sandbox Code Playgroud)

  • 一个用法示例会很棒.你会如何在系统中重写`typeCheck`? (2认同)