创建一些示例数据:
dat <- data.frame(Species = rep.int(LETTERS[1:4], c(4, 1, 3, 2)),
Effect = c(rep("Reproduction", 3), "Growth", "Growth",
"Reproduction", "Mortality", "Mortality",
"Growth", "Growth"),
Concentration = rnorm(10))
Run Code Online (Sandbox Code Playgroud)
你可以使用这个功能aggregate:
aggregate(Concentration ~ Species + Effect, dat, mean)
Run Code Online (Sandbox Code Playgroud)
尝试以下(感谢Brandon Bertelsen的好评):
创建数据:
foo = data.frame(Species=c(rep("A",4),"B",rep("C",3),"D","D"),
Effect=c(rep("Reproduction",3), rep("Growth",2),
"Reproduction", rep("Mortality",2), rep("Growth",2)),
Concentration=c(1.2,1.4,1.3,1.5,1.6,1.2,1.1,1,1.3,1.4))
Run Code Online (Sandbox Code Playgroud)
使用伟大的包装plyr有点神奇:)
library(plyr)
ddply(foo, .(Species,Effect), function(x) mean(x[,"Concentration"]))
Run Code Online (Sandbox Code Playgroud)
这是一个更复杂,但更清洁的版本(再次感谢Brandon Bertelsen):
ddply(foo, .(Species,Effect), summarize, mean=mean(Concentration))
Run Code Online (Sandbox Code Playgroud)
只是为了好玩,我称之为一晚......假设你data.frame的名字叫"dat",这里有两个选项:
一个data.table解决方案.
library(data.table)
datDT <- data.table(dat, key="Species,Effect")
datDT[, list(Concentration = mean(Concentration)), by = key(datDT)]
# Species Effect Concentration
# 1: A Growth 1.50
# 2: A Reproduction 1.30
# 3: B Growth 1.60
# 4: C Mortality 1.05
# 5: C Reproduction 1.20
# 6: D Growth 1.35
Run Code Online (Sandbox Code Playgroud)一种sqldf解决方案.
library(sqldf)
sqldf("select Species, Effect,
avg(Concentration) `Concentration`
from dat
group by Species, Effect")
# Species Effect Concentration
# 1 A Growth 1.50
# 2 A Reproduction 1.30
# 3 B Growth 1.60
# 4 C Mortality 1.05
# 5 C Reproduction 1.20
# 6 D Growth 1.35
Run Code Online (Sandbox Code Playgroud)