我有很长的字符串列表,例如这个机器可读的例子:
A <- list(c("Biology","Cell Biology","Art","Humanities, Multidisciplinary; Psychology, Experimental","Astronomy & Astrophysics; Physics, Particles & Fields","Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods","Geriatrics & Gerontology","Gerontology","Management","Operations Research & Management Science","Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic","Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability"))
Run Code Online (Sandbox Code Playgroud)
所以它看起来像这样:
> A
[[1]]
[1] "Biology"
[2] "Cell Biology"
[3] "Art"
[4] "Humanities, Multidisciplinary; Psychology, Experimental"
[5] "Astronomy & Astrophysics; Physics, Particles & Fields"
[6] "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods"
[7] "Geriatrics & Gerontology"
[8] "Gerontology"
[9] "Management"
[10] "Operations Research & Management Science"
[11] "Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic"
[12] "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability"
Run Code Online (Sandbox Code Playgroud)
我想编辑这些术语并删除重复项以获得此结果:
[1] "Science"
[2] "Science"
[3] "Arts & Humanities"
[4] "Arts & Humanities; Social Sciences"
[5] "Science"
[6] "Social Sciences; Science"
[7] "Science"
[8] "Social Sciences"
[9] "Social Sciences"
[10] "Science"
[11] "Science"
[12] "Social Sciences; Science"
Run Code Online (Sandbox Code Playgroud)
到目前为止我只得到了这个:
stringedit <- function(A)
{
A <-gsub("Biology", "Science", A)
A <-gsub("Cell Biology", "Science", A)
A <-gsub("Art", "Arts & Humanities", A)
A <-gsub("Humanities, Multidisciplinary", "Arts & Humanities", A)
A <-gsub("Psychology, Experimental", "Social Sciences", A)
A <-gsub("Astronomy & Astrophysics", "Science", A)
A <-gsub("Physics, Particles & Fields", "Science", A)
A <-gsub("Economics", "Social Sciences", A)
A <-gsub("Mathematics", "Science", A)
A <-gsub("Mathematics, Applied", "Science", A)
A <-gsub("Mathematics, Interdisciplinary Applications", "Science", A)
A <-gsub("Social Sciences, Mathematical Methods", "Social Sciences", A)
A <-gsub("Geriatrics & Gerontology", "Science", A)
A <-gsub("Gerontology", "Social Sciences", A)
A <-gsub("Management", "Social Sciences", A)
A <-gsub("Operations Research & Management Science", "Science", A)
A <-gsub("Computer Science, Artificial Intelligence", "Science", A)
A <-gsub("Computer Science, Information Systems", "Science", A)
A <-gsub("Engineering, Electrical & Electronic", "Science", A)
A <-gsub("Statistics & Probability", "Science", A)
}
B <- lapply(A, stringedit)
Run Code Online (Sandbox Code Playgroud)
但它无法正常工作:
> B
[[1]]
[1] "Science"
[2] "Cell Science"
[3] "Arts & Humanities"
[4] "Arts & Humanities; Social Sciences"
[5] "Science; Science"
[6] "Social Sciences; Science, Interdisciplinary Applications; Social Sciences"
[7] "Science"
[8] "Social Sciences"
[9] "Social Sciences"
[10] "Operations Research & Social Sciences Science"
[11] "Computer Science, Arts & Humanitiesificial Intelligence; Science; Science"
[12] "Social Sciences; Science, Interdisciplinary Applications; Social Sciences; Science"
Run Code Online (Sandbox Code Playgroud)
如何实现上述正确的输出?
非常感谢您提前考虑!
我发现将两列data.frame作为查找最简单,其中一列用于课程名称,一列用于该类别.这是一个例子:
course.categories <- data.frame(
Course =
c("Art", "Humanities, Multidisciplinary", "Biology", "Cell Biology",
"Astronomy & Astrophysics", "Physics, Particles & Fields", "Mathematics",
"Mathematics, Applied", "Mathematics, Interdisciplinary Applications",
"Geriatrics & Gerontology", "Operations Research & Management Science",
"Computer Science, Artificial Intelligence",
"Computer Science, Information Systems",
"Engineering, Electrical & Electronic", "Statistics & Probability",
"Psychology, Experimental", "Economics",
"Social Sciences, Mathematical Methods",
"Gerontology", "Management"),
Category =
c("Arts & Humanities", "Arts & Humanities", "Science", "Science",
"Science", "Science", "Science", "Science", "Science", "Science",
"Science", "Science", "Science", "Science", "Science", "Social Sciences",
"Social Sciences", "Social Sciences", "Social Sciences", "Social Sciences"))
Run Code Online (Sandbox Code Playgroud)
然后,假设A作为您问题中的列表:
sapply(strsplit(unlist(A), "; "),
function(x)
paste(unique(course.categories[match(x, course.categories[["Course"]]),
"Category"]),
collapse = "; "))
# [1] "Science" "Science"
# [3] "Arts & Humanities" "Arts & Humanities; Social Sciences"
# [5] "Science" "Social Sciences; Science"
# [7] "Science" "Social Sciences"
# [9] "Social Sciences" "Science"
# [11] "Science" "Social Sciences; Science"
Run Code Online (Sandbox Code Playgroud)
match将值A与course.categories数据集中的课程名称相匹配,并说明匹配发生在哪些行; 这用于提取课程所属的类别.然后,unique确保我们只有每个类别中的一个.paste把事情重新组合在一起
让我从一个例子开始。您有一个字符串“Cell Biology”。第一个替换 ,A <-gsub("Biology", "Science", A)将其变成“细胞科学”。那么就没有被替换。
由于您不使用正则表达式,我宁愿使用一种散列来进行替换:
myhash <- c( "Science", "Science", "Arts & Humanities", "Arts & Humanities", "Social Sciences",
"Science", "Science", "Social Sciences", "Science", "Science", "Science", "Social Sciences",
"Science", "Social Sciences", "Social Sciences", "Science", "Science", "Science", "Science",
"Science" )
names( myhash ) <- c( "Biology", "Cell Biology", "Art", "Humanities, Multidisciplinary",
"Psychology, Experimental", "Astronomy & Astrophysics", "Physics, Particles & Fields", "Economics",
"Mathematics", "Mathematics, Applied", "Mathematics, Interdisciplinary Applications",
"Social Sciences, Mathematical Methods", "Geriatrics & Gerontology", "Gerontology", "Management",
"Operations Research & Management Science", "Computer Science, Artificial Intelligence",
"Computer Science, Information Systems", "Engineering, Electrical & Electronic",
"Statistics & Probability" )
Run Code Online (Sandbox Code Playgroud)
现在,给定一个诸如“Biology”之类的字符串,您可以快速查找您的类别:
myhash[ "Biology" ]
Run Code Online (Sandbox Code Playgroud)
我不确定为什么你想使用列表而不是字符串向量,因此我将简化你的情况:
A <- c("Biology","Cell Biology","Art",
"Humanities, Multidisciplinary; Psychology, Experimental",
"Astronomy & Astrophysics; Physics, Particles & Fields",
"Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods",
"Geriatrics & Gerontology","Gerontology","Management","Operations Research & Management Science",
"Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic",
"Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability")
Run Code Online (Sandbox Code Playgroud)
has 查找不适用于复合字符串(包含“;”)。您可以拆分它们,但是使用strsplit. 然后,您可以使用unique避免术语重复,并使用该paste函数将其重新组合在一起。
stringedit <- function( x ) {
# first, split into subterms
a.all <- unlist( strsplit( x, "; *" ) ) ;
paste( unique( myhash[ a.all ] ), collapse= "; " )
}
unlist( lapply( A, stringedit ) )
Run Code Online (Sandbox Code Playgroud)
这是所需的结果:
[1] "Science" "Science" "Arts & Humanities" "Arts & Humanities; Social Sciences"
[5] "Science" "Social Sciences; Science" "Science" "Social Sciences"
[9] "Social Sciences" "Science" "Science" "Social Sciences; Science"
Run Code Online (Sandbox Code Playgroud)
当然,你可以*apply像这样多次调用:
a.spl <- sapply( A, strsplit, "; *" )
a.spl <- sapply( a.spl, function( x ) myhash[ x ] )
unlist( sapply( a.spl, collapse, "; " )
Run Code Online (Sandbox Code Playgroud)
这并不比之前的代码效率更高或更低。
是的,您可以使用正则表达式实现相同的目的,但首先,它会涉及无论如何分割字符串,然后使用正则表达式^Biology$来确保它们匹配“Biology”而不是“Cell Biology”等。除非您想要结构类似于“.* Biology”。最后,无论如何,你都必须删除重复项,在我看来,这一切都将是(i)不那么冗长(=更容易出错)和(ii)不值得付出努力。
| 归档时间: |
|
| 查看次数: |
494 次 |
| 最近记录: |