Kyl*_*ndt 11 merge join pandas
我有多个(超过2个)数据帧我想合并.它们都共享相同的值列:
In [431]: [x.head() for x in data]
Out[431]:
[ AvgStatisticData
DateTime
2012-10-14 14:00:00 39.335996
2012-10-14 15:00:00 40.210110
2012-10-14 16:00:00 48.282816
2012-10-14 17:00:00 40.593039
2012-10-14 18:00:00 40.952014,
AvgStatisticData
DateTime
2012-10-14 14:00:00 47.854712
2012-10-14 15:00:00 55.041512
2012-10-14 16:00:00 55.488026
2012-10-14 17:00:00 51.688483
2012-10-14 18:00:00 57.916672,
AvgStatisticData
DateTime
2012-10-14 14:00:00 54.171233
2012-10-14 15:00:00 48.718387
2012-10-14 16:00:00 59.978616
2012-10-14 17:00:00 50.984514
2012-10-14 18:00:00 54.924745,
AvgStatisticData
DateTime
2012-10-14 14:00:00 65.813114
2012-10-14 15:00:00 71.397868
2012-10-14 16:00:00 76.213973
2012-10-14 17:00:00 72.729002
2012-10-14 18:00:00 73.196415,
....etc
Run Code Online (Sandbox Code Playgroud)
我读到join可以处理多个数据帧,但是我得到:
In [432]: data[0].join(data[1:])
...
Exception: Indexes have overlapping values: ['AvgStatisticData']
Run Code Online (Sandbox Code Playgroud)
我试过传递rsuffix=["%i" % (i) for i in range(len(data))]
加入并仍然得到相同的错误.我可以通过data
以列名称不重叠的方式构建列表来解决此问题,但也许有更好的方法?
Wou*_*ire 15
In [65]: pd.concat(data, axis=1)
Out[65]:
AvgStatisticData AvgStatisticData AvgStatisticData AvgStatisticData
2012-10-14 14:00:00 39.335996 47.854712 54.171233 65.813114
2012-10-14 15:00:00 40.210110 55.041512 48.718387 71.397868
2012-10-14 16:00:00 48.282816 55.488026 59.978616 76.213973
2012-10-14 17:00:00 40.593039 51.688483 50.984514 72.729002
2012-10-14 18:00:00 40.952014 57.916672 54.924745 73.196415
Run Code Online (Sandbox Code Playgroud)
我会尝试pandas.merge
使用该suffixes=
选项。
import pandas as pd
import datetime as dt
df_1 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df_2 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df = pd.merge(df_1, df_2, on='x', suffixes=['_1', '_2'])
Run Code Online (Sandbox Code Playgroud)
我感兴趣的是看看专家们是否有一种更算法的方法来合并数据帧列表。