Java/Scala中的内存olap/pivot表中是否有数据结构/库?

Era*_*dan 7 olap scala data-structures

相关问题

这个问题非常相关,但是已经有两年了:在Java中的内存OLAP引擎中

背景

我想在内存中从给定的表格数据集创建一个像表格一样的数据透视表

例如,按婚姻状况计算的年龄(行是年龄,列是婚姻状况).

  • 输入:People列表,包含年龄和一些布尔属性(例如已婚),

  • 所需的输出:人数,按年龄(行)和已婚(列)

我尝试了什么(Scala)

case class Person(val age:Int, val isMarried:Boolean)

...
val people:List[Person] = ... //

val peopleByAge = people.groupBy(_.age)  //only by age
val peopleByMaritalStatus = people.groupBy(_.isMarried) //only by marital status
Run Code Online (Sandbox Code Playgroud)

我设法以天真的方式做到了,先按年龄分组,然后按婚姻状况map进行 分组,然后count输出结果,然后我foldRight汇总

TreeMap(peopleByAge.toSeq: _*).map(x => {
    val age = x._1
    val rows = x._2
    val numMarried = rows.count(_.isMarried())
    val numNotMarried = rows.length - numMarried
    (age, numMarried, numNotMarried)
}).foldRight(List[FinalResult]())(row,list) => {
     val cumMarried = row._2+ 
        (if (list.isEmpty) 0 else list.last.cumMarried) 
     val cumNotMarried = row._3 + 
        (if (list.isEmpty) 0 else l.last.cumNotMarried) 
     list :+ new FinalResult(row._1, row._2, row._3, cumMarried,cumNotMarried) 
}.reverse
Run Code Online (Sandbox Code Playgroud)

我不喜欢上面的代码,它不高效,难以阅读,我确信有更好的方法.

问题

我怎么groupBy"两个"?以及如何对每个子组进行计数,例如

有多少人正好30岁并结婚了?

另一个问题是,我如何做一个总计,回答这个问题:

有多少30岁以上的人结婚了?


编辑:

谢谢你所有的好答案.

为了澄清,我希望输出包含一个带有以下列的"表"

  • 年龄(升序)
  • Num已婚
  • Num未婚
  • 结婚总人数
  • 未结婚的总计

不仅要回答这些特定的问题,还要制作一份能够回答所有此类问题的报告.

Jas*_*n V 4

这是一个更详细的选项,但以通用方式执行此操作,而不是使用严格的数据类型。您当然可以使用泛型来使其变得更好,但我认为您已经明白了。

/** Creates a new pivot structure by finding correlated values 
  * and performing an operation on these values
  *
  * @param accuOp the accumulator function (e.g. sum, max, etc)
  * @param xCol the "x" axis column
  * @param yCol the "y" axis column
  * @param accuCol the column to collect and perform accuOp on
  * @return a new Pivot instance that has been transformed with the accuOp function
  */
def doPivot(accuOp: List[String] => String)(xCol: String, yCol: String, accuCol: String) = {
  // create list of indexes that correlate to x, y, accuCol
  val colsIdx = List(xCol, yCol, accuCol).map(headers.getOrElse(_, 1))

  // group by x and y, sending the resulting collection of
  // accumulated values to the accuOp function for post-processing
  val data = body.groupBy(row => {
    (row(colsIdx(0)), row(colsIdx(1)))
  }).map(g => {
    (g._1, accuOp(g._2.map(_(colsIdx(2)))))
  }).toMap

  // get distinct axis values
  val xAxis = data.map(g => {g._1._1}).toList.distinct
  val yAxis = data.map(g => {g._1._2}).toList.distinct

  // create result matrix
  val newRows = yAxis.map(y => {
    xAxis.map(x => {
      data.getOrElse((x,y), "")
    })
  })

 // collect it with axis labels for results
 Pivot(List((yCol + "/" + xCol) +: xAxis) :::
   newRows.zip(yAxis).map(x=> {x._2 +: x._1}))
}
Run Code Online (Sandbox Code Playgroud)

我的 Pivot 类型非常基本:

class Pivot(val rows: List[List[String]]) {

  val headers = rows.head.zipWithIndex.toMap
  val body    = rows.tail
  ...
}
Run Code Online (Sandbox Code Playgroud)

为了测试它,你可以这样做:

val marriedP = Pivot(
  List(
    List("Name", "Age", "Married"),
    List("Bill", "42", "TRUE"),
    List("Heloise", "47", "TRUE"),
    List("Thelma", "34", "FALSE"),
    List("Bridget", "47", "TRUE"),
    List("Robert", "42", "FALSE"),
    List("Eddie", "42", "TRUE")

  )
)

def accum(values: List[String]) = {
    values.map(x => {1}).sum.toString
}
println(marriedP + "\n")
println(marriedP.doPivot(accum)("Age", "Married", "Married"))
Run Code Online (Sandbox Code Playgroud)

其产量:

Name     Age      Married  
Bill     42       TRUE     
Heloise  47       TRUE     
Thelma   34       FALSE    
Bridget  47       TRUE     
Robert   42       FALSE    
Eddie    42       TRUE     

Married/Age  47           42           34           
TRUE         2            2                         
FALSE                     1            1 
Run Code Online (Sandbox Code Playgroud)

好处是,您可以使用柯里化来传递值的任何函数,就像在传统的 Excel 数据透视表中一样。

更多信息可以在这里找到: https: //github.com/vinsonizer/pivotfun