可能重复:
如何使用R应用分层或k均值聚类分析?
考虑具有相同列数但行数不同的这四个矩阵
library(gtools)
m1 <- matrix(sample(c(-1, 0, 1), 15, replace=T), 3)
m2 <- matrix(sample(c(-1, 0, 1), 25, replace=T), 5)
m3 <- matrix(sample(c(-1, 0, 1), 25, replace=T), 5)
m4 <- matrix(sample(c(-1, 0, 1), 30, replace=T), 6)   
rownames(m1) <- c(1:3)
rownames(m2) <- c(4:8)
rownames(m3) <- c(9:13)
rownames(m4) <- c(14:19)
我想以hclust()下列格式排列时适用于这四个矩阵:
mat <- list(m1, m2, m3, m4)
unite <- rbind(m1,m2,m3, m4)
rownames(unite) <- c(1:19)
distUnite <- as.matrix(dist(unite, method="manhattan"))
## empty matrix for storing the distance between pairwise matrices
dist4m <- matrix(0, nrow=4, ncol=4)
indices <- combinations(4,2)
distance <- apply(indices, 1,
                  function(pair){
                      print(pair)
                      s1=pair[1]
                      s2=pair[2] 
                      pairmean <- mean(distReads[which(m$Sample==samples[s1]), which(m$Sample==samples[s2])])
                      dist4m[s1,s2] <<- pairmean
                      dist4m[s2,s1] <<- pairmean
                  })
print(dist4m)
## then use hclust(), and plot()     
上面的脚本应该可以工作,但我想知道是否有更有效和可靠的方法来解决?
谢谢你的建议.
对它们进行分组(我假设你想要cbind和fill):
m.list <- list(m1,m2,m3,m4)
n <- max(sapply(m.list, nrow))
m.all <- do.call(cbind, lapply(m.list, function (x)
rbind(x, matrix(, n-nrow(x), ncol(x))))) 
m.dist <- dist(m.all)
m.hclust <- hclust(m.dist)
plot(m.hclust)

独立:
m1 <- matrix(sample(c(-1, 0, 1), 15, replace=T), 3) 
m2 <- matrix(sample(c(-1, 0, 1), 25, replace=T), 5)
m3 <- matrix(sample(c(-1, 0, 1), 25, replace=T), 5)
m4 <- matrix(sample(c(-1, 0, 1), 30, replace=T), 6)
m1.dist <- dist(m1)
m2.dist <- dist(m2)
m3.dist <- dist(m3)
m4.dist <- dist(m4)
m1.hclust <- hclust(m1.dist)
m2.hclust <- hclust(m2.dist)
m3.hclust <- hclust(m3.dist)
m4.hclust <- hclust(m4.dist)
plot(m1.hclust)
plot(m2.hclust)
plot(m3.hclust)
plot(m4.hclust)
 
 
 

| 归档时间: | 
 | 
| 查看次数: | 947 次 | 
| 最近记录: |