eli*_*i-k 136 r dataframe r-faq
使用与此类似的数据框:
set.seed(100)
df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
df <- df[order(df$cat, df$val), ]
df
cat val
1 aaa 0.05638315
2 aaa 0.25767250
3 aaa 0.30776611
4 aaa 0.46854928
5 aaa 0.55232243
6 bbb 0.17026205
7 bbb 0.37032054
8 bbb 0.48377074
9 bbb 0.54655860
10 bbb 0.81240262
11 ccc 0.28035384
12 ccc 0.39848790
13 ccc 0.62499648
14 ccc 0.76255108
15 ccc 0.88216552
Run Code Online (Sandbox Code Playgroud)
我想在每个组中添加一个带编号的列.这样做显然不是使用R的权力:
df$num <- 1
for (i in 2:(length(df[,1]))) {
if (df[i,"cat"]==df[(i-1),"cat"]) {
df[i,"num"]<-df[i-1,"num"]+1
}
}
df
cat val num
1 aaa 0.05638315 1
2 aaa 0.25767250 2
3 aaa 0.30776611 3
4 aaa 0.46854928 4
5 aaa 0.55232243 5
6 bbb 0.17026205 1
7 bbb 0.37032054 2
8 bbb 0.48377074 3
9 bbb 0.54655860 4
10 bbb 0.81240262 5
11 ccc 0.28035384 1
12 ccc 0.39848790 2
13 ccc 0.62499648 3
14 ccc 0.76255108 4
15 ccc 0.88216552 5
Run Code Online (Sandbox Code Playgroud)
这样做有什么好办法?
mne*_*nel 235
使用ave,ddply,dplyr或data.table:
df$num <- ave(df$val, df$cat, FUN = seq_along)
Run Code Online (Sandbox Code Playgroud)
要么:
library(plyr)
ddply(df, .(cat), mutate, id = seq_along(val))
Run Code Online (Sandbox Code Playgroud)
要么:
library(dplyr)
df %>% group_by(cat) %>% mutate(id = row_number())
Run Code Online (Sandbox Code Playgroud)
或(内存效率最高,因为它通过引用分配DT):
library(data.table)
DT <- data.table(df)
DT[, id := seq_len(.N), by = cat]
DT[, id := rowid(cat)]
Run Code Online (Sandbox Code Playgroud)
Jaa*_*aap 23
为了使这个r-faq问题更加完整,使用sequence和的基本R替代方案rle:
df$num <- sequence(rle(df$cat)$lengths)
Run Code Online (Sandbox Code Playgroud)
这给出了预期的结果:
Run Code Online (Sandbox Code Playgroud)> df cat val num 4 aaa 0.05638315 1 2 aaa 0.25767250 2 1 aaa 0.30776611 3 5 aaa 0.46854928 4 3 aaa 0.55232243 5 10 bbb 0.17026205 1 8 bbb 0.37032054 2 6 bbb 0.48377074 3 9 bbb 0.54655860 4 7 bbb 0.81240262 5 13 ccc 0.28035384 1 14 ccc 0.39848790 2 11 ccc 0.62499648 3 15 ccc 0.76255108 4 12 ccc 0.88216552 5
如果df$cat是因子变量,则需要as.character先将其包装:
df$num <- sequence(rle(as.character(df$cat))$lengths)
Run Code Online (Sandbox Code Playgroud)
另dplyr一种可能是:
df %>%
group_by(cat) %>%
mutate(num = 1:n())
cat val num
<fct> <dbl> <int>
1 aaa 0.0564 1
2 aaa 0.258 2
3 aaa 0.308 3
4 aaa 0.469 4
5 aaa 0.552 5
6 bbb 0.170 1
7 bbb 0.370 2
8 bbb 0.484 3
9 bbb 0.547 4
10 bbb 0.812 5
11 ccc 0.280 1
12 ccc 0.398 2
13 ccc 0.625 3
14 ccc 0.763 4
15 ccc 0.882 5
Run Code Online (Sandbox Code Playgroud)
这是一个选项,使用for循环按组而不是行(像OP一样)
for (i in unique(df$cat)) df$num[df$cat == i] <- seq_len(sum(df$cat == i))
Run Code Online (Sandbox Code Playgroud)
这是一个小的改进技巧,允许在组内排序“ val”:
# 1. Data set
set.seed(100)
df <- data.frame(
cat = c(rep("aaa", 5), rep("ccc", 5), rep("bbb", 5)),
val = runif(15))
# 2. 'dplyr' approach
df %>%
arrange(cat, val) %>%
group_by(cat) %>%
mutate(id = row_number())
Run Code Online (Sandbox Code Playgroud)
我想data.table使用该rank()函数添加一个变体,它提供了更改排序的额外可能性,从而使其比seq_len()解决方案更灵活,并且非常类似于RDBMS中的row_number函数.
# Variant with ascending ordering
library(data.table)
dt <- data.table(df)
dt[, .( val
, num = rank(val))
, by = list(cat)][order(cat, num),]
cat val num
1: aaa 0.05638315 1
2: aaa 0.25767250 2
3: aaa 0.30776611 3
4: aaa 0.46854928 4
5: aaa 0.55232243 5
6: bbb 0.17026205 1
7: bbb 0.37032054 2
8: bbb 0.48377074 3
9: bbb 0.54655860 4
10: bbb 0.81240262 5
11: ccc 0.28035384 1
12: ccc 0.39848790 2
13: ccc 0.62499648 3
14: ccc 0.76255108 4
# Variant with descending ordering
dt[, .( val
, num = rank(-val))
, by = list(cat)][order(cat, num),]
Run Code Online (Sandbox Code Playgroud)