Sex*_*ast 5 algorithm dynamic-programming
我想找出一个字符串中最长的回文子序列.在任何地方我都找到算法来找出子序列的长度,并且声明可以扩展算法以返回子序列,但是我找不到如何.任何人都可以解释我怎样才能得到序列?
既然您在geeksforgeeks中提到了链接Longest Palindromic Subsequence,我修改了解决方案以输出结果.我认为我们需要一个辅助的二维数组来存储回文子序列的来源,所以我们最终可以通过辅助数组获得结果.您可以在以下代码中看到逻辑:
#include<iostream>
#include<cstring>
using namespace std;
// A utility function to get max of two integers
int max (int x, int y) { return (x > y)? x : y; }
// Returns the length of the longest palindromic subsequence in seq
int lps(char *str,char *result)
{
int n = strlen(str);
int i, j, cl;
int L[n][n]; // Create a table to store results of subproblems
int Way[n][n];// Store how the palindrome come from.
// Strings of length 1 are palindrome of lentgh 1
for (i = 0; i < n; i++)
{
L[i][i] = 1;
Way[i][i]=0;
}
// Build the table. Note that the lower diagonal values of table are
// useless and not filled in the process. The values are filled in a
// manner similar to Matrix Chain Multiplication DP solution (See
// http://www.geeksforgeeks.org/archives/15553). cl is length of
// substring
for (cl=2; cl<=n; cl++)
{
for (i=0; i<n-cl+1; i++)
{
j = i+cl-1;
if (str[i] == str[j] && cl == 2)
{
L[i][j] = 2;
Way[i][j]=0;
}
else if (str[i] == str[j])
{
L[i][j] = L[i+1][j-1] + 2;
Way[i][j]=0;
}
else
{
if(L[i][j-1]>L[i+1][j])
{
L[i][j]=L[i][j-1];
Way[i][j]=1;
}
else
{
L[i][j]=L[i+1][j];
Way[i][j]=2;
}
}
}
}
int index=0;
int s=0,e=n-1;
while(s<=e)
{
if(Way[s][e]==0)
{
result[index++]=str[s];
s+=1;
e-=1;
}
else if(Way[s][e]==1)e-=1;
else if(Way[s][e]==2)s+=1;
}
int endIndex=(L[0][n-1]%2)?index-1:index;
for(int k=0;k<endIndex;++k)result[L[0][n-1]-1-k]=result[k];
result[index+endIndex]='\0';
return L[0][n-1];
}
/* Driver program to test above functions */
int main()
{
char seq[] = "GEEKSFORGEEKS";
char result[20];
cout<<"The lnegth of the LPS is "<<lps(seq,result)<<":"<<endl;
cout<<result<<endl;
getchar();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
希望能帮助到你!
以下是解释:
设X [0..n-1]为长度为n的输入序列,L(0,n-1)为X [0..n-1]的最长回文子序列的长度.
共有5例.
1)每个单个字符是长度为1的回文.对于给定序列中的所有索引i,L(i,i)= 1.
2)只有2个字符,两者都相同.L(i,j)= 2.
3)有两个以上的字符,第一个和最后一个字符是相同的L(i,j)= L(i + 1,j - 1)+ 2
4)第一个和最后一个字符不相同,L(i + 1,j)<L(i,j-1).L(i,j)= L(i,j-1).
5)第一个和最后一个字符不相同,L(i + 1,j)> = L(i,j - 1).L(i,j)= L(i + 1,j).
我们可以观察到,只有在1,2和3的情况下,字符X [i]才包含在最终结果中.我们使用二维辅助数组来表示回文子序列的来源.案例1,2,3的值为0; 案例4的值为1; 案例5的值为2.
用辅助阵列Way.我们可以得到如下结果:
Let two variables s=0 and e=n-1.
While s<=e
Loop
If Way[s][e]==0 Then X[s] should be included in the result and we store it in our result array.
Else if Way[s][e]==1 Then X[s] should not be include in the result and update e=e-1 (because our result comes from case 4).
Else if Way[s][e]==2 Then X[s] should not be include in the result and update s=s+1 (because our result comes from case 5).
Run Code Online (Sandbox Code Playgroud)
当s> e时,应该终止循环.通过这种方式,我们可以获得结果的一半,我们可以轻松扩展它以获得整个结果.