Dr.*_*rew 12 python math numpy
我正在写一个移动平均函数,它使用numpy中的convolve函数,它应该等于a(加权移动平均值).当我的权重都相等时(如简单的算术平均值),它可以正常工作:
data = numpy.arange(1,11)
numdays = 5
w = [1.0/numdays]*numdays
numpy.convolve(data,w,'valid')
Run Code Online (Sandbox Code Playgroud)
给
array([ 3., 4., 5., 6., 7., 8.])
Run Code Online (Sandbox Code Playgroud)
但是,当我尝试使用加权平均值时
w = numpy.cumsum(numpy.ones(numdays,dtype=float),axis=0); w = w/numpy.sum(w)
Run Code Online (Sandbox Code Playgroud)
而不是(对于相同的数据)3.667,4.667,5.667,6.667,...我希望,我得到
array([ 2.33333333, 3.33333333, 4.33333333, 5.33333333, 6.33333333,
7.33333333])
Run Code Online (Sandbox Code Playgroud)
如果我删除'有效'标志,我甚至看不到正确的值.我真的想使用卷积为WMA和MA,因为它使代码更清晰(相同的代码,不同的权重),否则我认为我将不得不遍历所有数据并采取切片.
关于这种行为的任何想法?
seb*_*erg 15
你想要的是np.correlate
在卷积中,第二个参数基本上是倒置的,所以你的预期结果将是np.convolve(data, w[::-1], 'valid')
.