Python中的random.sample和random.shuffle有什么区别

use*_*386 7 python random

我有一个包含 1500 个元素的列表 a_tot,我想以随机方式将该列表分为两个列表。列表 a_1 将有 1300 个元素,列表 a_2 将有 200 个元素。我的问题是关于随机化包含 1500 个元素的原始列表的最佳方法。当我对列表进行随机化时,我可以取一个包含 1300 的切片,另一个包含 200 的切片。一种方法是使用 random.shuffle,另一种方法是使用 random.sample。两种方法之间的随机化质量有什么差异吗?列表1中的数据应该是随机样本,列表2中的数据也是如此。有什么建议吗?使用随机播放:

random.shuffle(a_tot)    #get a randomized list
a_1 = a_tot[0:1300]     #pick the first 1300
a_2 = a_tot[1300:]      #pick the last 200
Run Code Online (Sandbox Code Playgroud)

使用样本

new_t = random.sample(a_tot,len(a_tot))    #get a randomized list
a_1 = new_t[0:1300]     #pick the first 1300
a_2 = new_t[1300:]      #pick the last 200
Run Code Online (Sandbox Code Playgroud)

mgi*_*son 5

shuffle的来源:

def shuffle(self, x, random=None, int=int):
    """x, random=random.random -> shuffle list x in place; return None.

    Optional arg random is a 0-argument function returning a random
    float in [0.0, 1.0); by default, the standard random.random.
    """

    if random is None:
        random = self.random
    for i in reversed(xrange(1, len(x))):
        # pick an element in x[:i+1] with which to exchange x[i]
        j = int(random() * (i+1))
        x[i], x[j] = x[j], x[i]
Run Code Online (Sandbox Code Playgroud)

样本来源:

def sample(self, population, k):
    """Chooses k unique random elements from a population sequence.

    Returns a new list containing elements from the population while
    leaving the original population unchanged.  The resulting list is
    in selection order so that all sub-slices will also be valid random
    samples.  This allows raffle winners (the sample) to be partitioned
    into grand prize and second place winners (the subslices).

    Members of the population need not be hashable or unique.  If the
    population contains repeats, then each occurrence is a possible
    selection in the sample.

    To choose a sample in a range of integers, use xrange as an argument.
    This is especially fast and space efficient for sampling from a
    large population:   sample(xrange(10000000), 60)
    """

    # XXX Although the documentation says `population` is "a sequence",
    # XXX attempts are made to cater to any iterable with a __len__
    # XXX method.  This has had mixed success.  Examples from both
    # XXX sides:  sets work fine, and should become officially supported;
    # XXX dicts are much harder, and have failed in various subtle
    # XXX ways across attempts.  Support for mapping types should probably
    # XXX be dropped (and users should pass mapping.keys() or .values()
    # XXX explicitly).

    # Sampling without replacement entails tracking either potential
    # selections (the pool) in a list or previous selections in a set.

    # When the number of selections is small compared to the
    # population, then tracking selections is efficient, requiring
    # only a small set and an occasional reselection.  For
    # a larger number of selections, the pool tracking method is
    # preferred since the list takes less space than the
    # set and it doesn't suffer from frequent reselections.

    n = len(population)
    if not 0 <= k <= n:
        raise ValueError, "sample larger than population"
    random = self.random
    _int = int
    result = [None] * k
    setsize = 21        # size of a small set minus size of an empty list
    if k > 5:
        setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
    if n <= setsize or hasattr(population, "keys"):
        # An n-length list is smaller than a k-length set, or this is a
        # mapping type so the other algorithm wouldn't work.
        pool = list(population)
        for i in xrange(k):         # invariant:  non-selected at [0,n-i)
            j = _int(random() * (n-i))
            result[i] = pool[j]
            pool[j] = pool[n-i-1]   # move non-selected item into vacancy
    else:
        try:
            selected = set()
            selected_add = selected.add
            for i in xrange(k):
                j = _int(random() * n)
                while j in selected:
                    j = _int(random() * n)
                selected_add(j)
                result[i] = population[j]
        except (TypeError, KeyError):   # handle (at least) sets
            if isinstance(population, list):
                raise
            return self.sample(tuple(population), k)
    return result
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,在这两种情况下,随机化基本上都是由 line 完成的int(random() * n)。因此,底层算法本质上是相同的。


mit*_*tnk 0

我认为它们是完全相同的,除了一个更新了原始列表,一个使用(只读)它。质量上没有差异。