msu*_*bot 51 python pickle scikit-learn
背景:我刚刚开始使用scikit-learn,并在页面底部阅读有关joblib和pickle的内容.
使用joblib替换pickle(joblib.dump和joblib.load)可能更有意思,它对大数据更有效,但只能腌制到磁盘而不是字符串
我读了关于Pickle的问答 ,Python中常见的pickle用例,并想知道这里的社区是否可以分享joblib和pickle之间的差异?应该何时使用另一个?
ogr*_*sel 57
joblib在大型numpy数组上通常要快得多,因为它对numpy数据结构的数组缓冲区有一个特殊的处理.要查找实现细节,您可以查看源代码.它还可以在使用zlib或lz4进行酸洗时动态压缩该数据.
joblib还可以在加载时对内存映射未压缩的joblib-pickled numpy数组的数据缓冲区进行内存映射,从而可以在进程之间共享内存.
请注意,如果你没有腌制大型numpy数组,那么常规pickle可以明显更快,尤其是在大型python对象集合(例如str对象的大型dict)上,因为标准库的pickle模块是用C实现的joblib是纯python.
请注意,一旦PEP 574(Pickle协议5)合并(希望用于Python 3.8),使用标准库来挑选大型numpy数组会更有效.
尽管如此,joblib在内存映射模式下加载具有嵌套numpy数组的对象可能仍然有用mmap_mode="r".
Mic*_*ano 10
感谢Gunjan给我们这个脚本!我为Python3结果修改了它
#comapare pickle loaders
from time import time
import pickle
import os
import _pickle as cPickle
from sklearn.externals import joblib
file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'database.clf')
t1 = time()
lis = []
d = pickle.load(open(file,"rb"))
print("time for loading file size with pickle", os.path.getsize(file),"KB =>", time()-t1)
t1 = time()
cPickle.load(open(file,"rb"))
print("time for loading file size with cpickle", os.path.getsize(file),"KB =>", time()-t1)
t1 = time()
joblib.load(file)
print("time for loading file size joblib", os.path.getsize(file),"KB =>", time()-t1)
time for loading file size with pickle 79708 KB => 0.16768312454223633
time for loading file size with cpickle 79708 KB => 0.0002372264862060547
time for loading file size joblib 79708 KB => 0.0006849765777587891
Run Code Online (Sandbox Code Playgroud)
我遇到了同样的问题,所以我尝试了这个问题(使用python 2.7),因为我需要加载一个大型的pickle文件
#comapare pickle loaders
from time import time
import pickle
import os
try:
import cPickle
except:
print "Cannot import cPickle"
import joblib
t1 = time()
lis = []
d = pickle.load(open("classi.pickle","r"))
print "time for loading file size with pickle", os.path.getsize("classi.pickle"),"KB =>", time()-t1
t1 = time()
cPickle.load(open("classi.pickle","r"))
print "time for loading file size with cpickle", os.path.getsize("classi.pickle"),"KB =>", time()-t1
t1 = time()
joblib.load("classi.pickle")
print "time for loading file size joblib", os.path.getsize("classi.pickle"),"KB =>", time()-t1
Run Code Online (Sandbox Code Playgroud)
输出是
time for loading file size with pickle 1154320653 KB => 6.75876188278
time for loading file size with cpickle 1154320653 KB => 52.6876490116
time for loading file size joblib 1154320653 KB => 6.27503800392
Run Code Online (Sandbox Code Playgroud)
根据这个作业库,这三个模块中的cPickle和Pickle模块效果更好。谢谢