Kri*_*ege 13 c++ floating-point type-conversion integral c++03
对于某些整数类型,即使浮点值远远超出整数的可表示范围,如何找到最接近某个浮点类型值的值.
或者更确切地说:
我们F是一个浮点型(可能是float,double或long double).让I是一个整数类型.
假设两个F并I有有效的专业化std::numeric_limits<>.
给定可表示的值F,并且仅使用C++ 03,如何找到最接近的可表示值I?
我追求的是一个纯粹,高效且线程安全的解决方案,除了C++ 03所保证的以外,它不会对平台做任何假设.
如果不存在这样的解决方案,是否可以使用C99/C++ 11的新功能找到一个?
lround()由于报告域错误的非平凡方式,使用C99似乎是有问题的.这些域错误是否可以以便携式和线程安全的方式捕获?
注意:我知道Boost可能通过其boost::numerics::converter<>模板提供解决方案,但由于其高复杂性和冗长性,我无法从中提取必需品,因此我无法检查他们的解决方案是否成功超出C++ 03的假设.
下面的天真方法失败了,因为I(f)当C++ 03的整数部分f不是可表示的值时,结果是未定义的I.
template<class I, class F> I closest_int(F f)
{
return I(f);
}
Run Code Online (Sandbox Code Playgroud)
然后考虑以下方法:
template<class I, class F> I closest_int(F f)
{
if (f < std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
if (std::numeric_limits<I>::max() < f) return std::numeric_limits<I>::max();
return I(f);
}
Run Code Online (Sandbox Code Playgroud)
这也失败,因为的组成部分F(std::numeric_limits<I>::min()),并F(std::numeric_limits<I>::max())可能仍然无法在表示的I.
最后考虑第三种方法也失败了:
template<class I, class F> I closest_int(F f)
{
if (f <= std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
if (std::numeric_limits<I>::max() <= f) return std::numeric_limits<I>::max();
return I(f);
}
Run Code Online (Sandbox Code Playgroud)
这个时间I(f)总是有一个明确定义的结果,但是,因为F(std::numeric_limits<I>::max())可能会小得多std::numeric_limits<I>::max(),我们可能会返回std::numeric_limits<I>::max()一个下面是多个整数值的浮点值std::numeric_limits<I>::max().
请注意,所有问题都出现了,因为未定义转换是F(i)向上舍入还是向下舍入到最接近的可表示浮点值.
以下是C++ 03(4.9浮动积分转换)的相关部分:
可以将整数类型或枚举类型的右值转换为浮点类型的右值.如果可能,结果是准确的.否则,它是下一个较低或较高可表示值的实现定义选择.
我有一个针对 radix-2(二进制)浮点类型和高达 64 位的整数类型的实用解决方案。见下文。评论应该很清楚。输出如下。
// file: f2i.cpp
//
// compiled with MinGW x86 (gcc version 4.6.2) as:
// g++ -Wall -O2 -std=c++03 f2i.cpp -o f2i.exe
#include <iostream>
#include <iomanip>
#include <limits>
using namespace std;
template<class I, class F> I truncAndCap(F f)
{
/*
This function converts (by truncating the
fractional part) the floating-point value f (of type F)
into an integer value (of type I), avoiding undefined
behavior by returning std::numeric_limits<I>::min() and
std::numeric_limits<I>::max() when f is too small or
too big to be converted to type I directly.
2 problems:
- F may fail to convert to I,
which is undefined behavior and we want to avoid that.
- I may not convert exactly into F
- Direct I & F comparison fails because of I to F promotion,
which can be inexact.
This solution is for the most practical case when I and F
are radix-2 (binary) integer and floating-point types.
*/
int Idigits = numeric_limits<I>::digits;
int Isigned = numeric_limits<I>::is_signed;
/*
Calculate cutOffMax = 2 ^ std::numeric_limits<I>::digits
(where ^ denotes exponentiation) as a value of type F.
We assume that F is a radix-2 (binary) floating-point type AND
it has a big enough exponent part to hold the value of
std::numeric_limits<I>::digits.
FLT_MAX_10_EXP/DBL_MAX_10_EXP/LDBL_MAX_10_EXP >= 37
(guaranteed per C++ standard from 2003/C standard from 1999)
corresponds to log2(1e37) ~= 122, so the type I can contain
up to 122 bits. In practice, integers longer than 64 bits
are extremely rare (if existent at all), especially on old systems
of the 2003 C++ standard's time.
*/
const F cutOffMax = F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2));
if (f >= cutOffMax)
return numeric_limits<I>::max();
/*
Calculate cutOffMin = - 2 ^ std::numeric_limits<I>::digits
(where ^ denotes exponentiation) as a value of type F for
signed I's OR cutOffMin = 0 for unsigned I's in a similar fashion.
*/
const F cutOffMin = Isigned ? -F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2)) : 0;
if (f <= cutOffMin)
return numeric_limits<I>::min();
/*
Mathematically, we may still have a little problem (2 cases):
cutOffMin < f < std::numeric_limits<I>::min()
srd::numeric_limits<I>::max() < f < cutOffMax
These cases are only possible when f isn't a whole number, when
it's either std::numeric_limits<I>::min() - value in the range (0,1)
or std::numeric_limits<I>::max() + value in the range (0,1).
We can ignore this altogether because converting f to type I is
guaranteed to truncate the fractional part off, and therefore
I(f) will always be in the range
[std::numeric_limits<I>::min(), std::numeric_limits<I>::max()].
*/
return I(f);
}
template<class I, class F> void test(const char* msg, F f)
{
I i = truncAndCap<I,F>(f);
cout <<
msg <<
setiosflags(ios_base::showpos) <<
setw(14) << setprecision(12) <<
f << " -> " <<
i <<
resetiosflags(ios_base::showpos) <<
endl;
}
#define TEST(I,F,VAL) \
test<I,F>(#F " -> " #I ": ", VAL);
int main()
{
TEST(short, float, -1.75f);
TEST(short, float, -1.25f);
TEST(short, float, +0.00f);
TEST(short, float, +1.25f);
TEST(short, float, +1.75f);
TEST(short, float, -32769.00f);
TEST(short, float, -32768.50f);
TEST(short, float, -32768.00f);
TEST(short, float, -32767.75f);
TEST(short, float, -32767.25f);
TEST(short, float, -32767.00f);
TEST(short, float, -32766.00f);
TEST(short, float, +32766.00f);
TEST(short, float, +32767.00f);
TEST(short, float, +32767.25f);
TEST(short, float, +32767.75f);
TEST(short, float, +32768.00f);
TEST(short, float, +32768.50f);
TEST(short, float, +32769.00f);
TEST(int, float, -2147483904.00f);
TEST(int, float, -2147483648.00f);
TEST(int, float, -16777218.00f);
TEST(int, float, -16777216.00f);
TEST(int, float, -16777215.00f);
TEST(int, float, +16777215.00f);
TEST(int, float, +16777216.00f);
TEST(int, float, +16777218.00f);
TEST(int, float, +2147483648.00f);
TEST(int, float, +2147483904.00f);
TEST(int, double, -2147483649.00);
TEST(int, double, -2147483648.00);
TEST(int, double, -2147483647.75);
TEST(int, double, -2147483647.25);
TEST(int, double, -2147483647.00);
TEST(int, double, +2147483647.00);
TEST(int, double, +2147483647.25);
TEST(int, double, +2147483647.75);
TEST(int, double, +2147483648.00);
TEST(int, double, +2147483649.00);
TEST(unsigned, double, -1.00);
TEST(unsigned, double, +1.00);
TEST(unsigned, double, +4294967295.00);
TEST(unsigned, double, +4294967295.25);
TEST(unsigned, double, +4294967295.75);
TEST(unsigned, double, +4294967296.00);
TEST(unsigned, double, +4294967297.00);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
输出(ideone打印与我的电脑相同):
float -> short: -1.75 -> -1
float -> short: -1.25 -> -1
float -> short: +0 -> +0
float -> short: +1.25 -> +1
float -> short: +1.75 -> +1
float -> short: -32769 -> -32768
float -> short: -32768.5 -> -32768
float -> short: -32768 -> -32768
float -> short: -32767.75 -> -32767
float -> short: -32767.25 -> -32767
float -> short: -32767 -> -32767
float -> short: -32766 -> -32766
float -> short: +32766 -> +32766
float -> short: +32767 -> +32767
float -> short: +32767.25 -> +32767
float -> short: +32767.75 -> +32767
float -> short: +32768 -> +32767
float -> short: +32768.5 -> +32767
float -> short: +32769 -> +32767
float -> int: -2147483904 -> -2147483648
float -> int: -2147483648 -> -2147483648
float -> int: -16777218 -> -16777218
float -> int: -16777216 -> -16777216
float -> int: -16777215 -> -16777215
float -> int: +16777215 -> +16777215
float -> int: +16777216 -> +16777216
float -> int: +16777218 -> +16777218
float -> int: +2147483648 -> +2147483647
float -> int: +2147483904 -> +2147483647
double -> int: -2147483649 -> -2147483648
double -> int: -2147483648 -> -2147483648
double -> int: -2147483647.75 -> -2147483647
double -> int: -2147483647.25 -> -2147483647
double -> int: -2147483647 -> -2147483647
double -> int: +2147483647 -> +2147483647
double -> int: +2147483647.25 -> +2147483647
double -> int: +2147483647.75 -> +2147483647
double -> int: +2147483648 -> +2147483647
double -> int: +2147483649 -> +2147483647
double -> unsigned: -1 -> 0
double -> unsigned: +1 -> 1
double -> unsigned: +4294967295 -> 4294967295
double -> unsigned: +4294967295.25 -> 4294967295
double -> unsigned: +4294967295.75 -> 4294967295
double -> unsigned: +4294967296 -> 4294967295
double -> unsigned: +4294967297 -> 4294967295
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
806 次 |
| 最近记录: |