C++ 03中最接近浮点值的整数

Kri*_*ege 13 c++ floating-point type-conversion integral c++03

对于某些整数类型,即使浮点值远远超出整数的可表示范围,如何找到最接近某个浮点类型值的值.

或者更确切地说:

我们F是一个浮点型(可能是float,doublelong double).让I是一个整数类型.

假设两个FI有有效的专业化std::numeric_limits<>.

给定可表示的值F,并且仅使用C++ 03,如何找到最接近的可表示值I

我追求的是一个纯粹,高效且线程安全的解决方案,除了C++ 03所保证的以外,它不会对平台做任何假设.

如果不存在这样的解决方案,是否可以使用C99/C++ 11的新功能找到一个?

lround()由于报告域错误的非平凡方式,使用C99似乎是有问题的.这些域错误是否可以以便携式和线程安全的方式捕获?

注意:我知道Boost可能通过其boost::numerics::converter<>模板提供解决方案,但由于其高复杂性和冗长性,我无法从中提取必需品,因此我无法检查他们的解决方案是否成功超出C++ 03的假设.

下面的天真方法失败了,因为I(f)当C++ 03的整数部分f不是可表示的值时,结果是未定义的I.

template<class I, class F> I closest_int(F f)
{
  return I(f);
}
Run Code Online (Sandbox Code Playgroud)

然后考虑以下方法:

template<class I, class F> I closest_int(F f)
{
  if (f < std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() < f) return std::numeric_limits<I>::max();
  return I(f);
}
Run Code Online (Sandbox Code Playgroud)

这也失败,因为的组成部分F(std::numeric_limits<I>::min()),并F(std::numeric_limits<I>::max())可能仍然无法在表示的I.

最后考虑第三种方法也失败了:

template<class I, class F> I closest_int(F f)
{
  if (f <= std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() <= f) return std::numeric_limits<I>::max();
  return I(f);
}
Run Code Online (Sandbox Code Playgroud)

这个时间I(f)总是有一个明确定义的结果,但是,因为F(std::numeric_limits<I>::max())可能会小得多std::numeric_limits<I>::max(),我们可能会返回std::numeric_limits<I>::max()一个下面是多个整数值的浮点值std::numeric_limits<I>::max().

请注意,所有问题都出现了,因为未定义转换是F(i)向上舍入还是向下舍入到最接近的可表示浮点值.

以下是C++ 03(4.9浮动积分转换)的相关部分:

可以将整数类型或枚举类型的右值转换为浮点类型的右值.如果可能,结果是准确的.否则,它是下一个较低或较高可表示值的实现定义选择.

Ale*_*nze 3

我有一个针对 radix-2(二进制)浮点类型和高达 64 位的整数类型的实用解决方案。见下文。评论应该很清楚。输出如下。

// file: f2i.cpp
//
// compiled with MinGW x86 (gcc version 4.6.2) as:
//   g++ -Wall -O2 -std=c++03 f2i.cpp -o f2i.exe
#include <iostream>
#include <iomanip>
#include <limits>

using namespace std;

template<class I, class F> I truncAndCap(F f)
{
/*
  This function converts (by truncating the
  fractional part) the floating-point value f (of type F)
  into an integer value (of type I), avoiding undefined
  behavior by returning std::numeric_limits<I>::min() and
  std::numeric_limits<I>::max() when f is too small or
  too big to be converted to type I directly.

  2 problems:
  - F may fail to convert to I,
    which is undefined behavior and we want to avoid that.
  - I may not convert exactly into F
    - Direct I & F comparison fails because of I to F promotion,
      which can be inexact.

  This solution is for the most practical case when I and F
  are radix-2 (binary) integer and floating-point types.
*/
  int Idigits = numeric_limits<I>::digits;
  int Isigned = numeric_limits<I>::is_signed;

/*
  Calculate cutOffMax = 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F.

  We assume that F is a radix-2 (binary) floating-point type AND
  it has a big enough exponent part to hold the value of
  std::numeric_limits<I>::digits.

  FLT_MAX_10_EXP/DBL_MAX_10_EXP/LDBL_MAX_10_EXP >= 37
  (guaranteed per C++ standard from 2003/C standard from 1999)
  corresponds to log2(1e37) ~= 122, so the type I can contain
  up to 122 bits. In practice, integers longer than 64 bits
  are extremely rare (if existent at all), especially on old systems
  of the 2003 C++ standard's time.
*/
  const F cutOffMax = F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2));

  if (f >= cutOffMax)
    return numeric_limits<I>::max();

/*
  Calculate cutOffMin = - 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F for
  signed I's OR cutOffMin = 0 for unsigned I's in a similar fashion.
*/
  const F cutOffMin = Isigned ? -F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2)) : 0;

  if (f <= cutOffMin)
    return numeric_limits<I>::min();

/*
  Mathematically, we may still have a little problem (2 cases):
    cutOffMin < f < std::numeric_limits<I>::min()
    srd::numeric_limits<I>::max() < f < cutOffMax

  These cases are only possible when f isn't a whole number, when
  it's either std::numeric_limits<I>::min() - value in the range (0,1)
  or std::numeric_limits<I>::max() + value in the range (0,1).

  We can ignore this altogether because converting f to type I is
  guaranteed to truncate the fractional part off, and therefore
  I(f) will always be in the range
  [std::numeric_limits<I>::min(), std::numeric_limits<I>::max()].
*/

  return I(f);
}

template<class I, class F> void test(const char* msg, F f)
{
  I i = truncAndCap<I,F>(f);
  cout <<
    msg <<
    setiosflags(ios_base::showpos) <<
    setw(14) << setprecision(12) <<
    f << " -> " <<
    i <<
    resetiosflags(ios_base::showpos) <<
    endl;
}

#define TEST(I,F,VAL) \
  test<I,F>(#F " -> " #I ": ", VAL);

int main()
{
  TEST(short, float,     -1.75f);
  TEST(short, float,     -1.25f);
  TEST(short, float,     +0.00f);
  TEST(short, float,     +1.25f);
  TEST(short, float,     +1.75f);

  TEST(short, float, -32769.00f);
  TEST(short, float, -32768.50f);
  TEST(short, float, -32768.00f);
  TEST(short, float, -32767.75f);
  TEST(short, float, -32767.25f);
  TEST(short, float, -32767.00f);
  TEST(short, float, -32766.00f);
  TEST(short, float, +32766.00f);
  TEST(short, float, +32767.00f);
  TEST(short, float, +32767.25f);
  TEST(short, float, +32767.75f);
  TEST(short, float, +32768.00f);
  TEST(short, float, +32768.50f);
  TEST(short, float, +32769.00f);

  TEST(int, float, -2147483904.00f);
  TEST(int, float, -2147483648.00f);
  TEST(int, float, -16777218.00f);
  TEST(int, float, -16777216.00f);
  TEST(int, float, -16777215.00f);
  TEST(int, float, +16777215.00f);
  TEST(int, float, +16777216.00f);
  TEST(int, float, +16777218.00f);
  TEST(int, float, +2147483648.00f);
  TEST(int, float, +2147483904.00f);

  TEST(int, double, -2147483649.00);
  TEST(int, double, -2147483648.00);
  TEST(int, double, -2147483647.75);
  TEST(int, double, -2147483647.25);
  TEST(int, double, -2147483647.00);
  TEST(int, double, +2147483647.00);
  TEST(int, double, +2147483647.25);
  TEST(int, double, +2147483647.75);
  TEST(int, double, +2147483648.00);
  TEST(int, double, +2147483649.00);

  TEST(unsigned, double,          -1.00);
  TEST(unsigned, double,          +1.00);
  TEST(unsigned, double, +4294967295.00);
  TEST(unsigned, double, +4294967295.25);
  TEST(unsigned, double, +4294967295.75);
  TEST(unsigned, double, +4294967296.00);
  TEST(unsigned, double, +4294967297.00);

  return 0;
}
Run Code Online (Sandbox Code Playgroud)

输出(ideone打印与我的电脑相同):

float -> short:          -1.75 -> -1
float -> short:          -1.25 -> -1
float -> short:             +0 -> +0
float -> short:          +1.25 -> +1
float -> short:          +1.75 -> +1
float -> short:         -32769 -> -32768
float -> short:       -32768.5 -> -32768
float -> short:         -32768 -> -32768
float -> short:      -32767.75 -> -32767
float -> short:      -32767.25 -> -32767
float -> short:         -32767 -> -32767
float -> short:         -32766 -> -32766
float -> short:         +32766 -> +32766
float -> short:         +32767 -> +32767
float -> short:      +32767.25 -> +32767
float -> short:      +32767.75 -> +32767
float -> short:         +32768 -> +32767
float -> short:       +32768.5 -> +32767
float -> short:         +32769 -> +32767
float -> int:    -2147483904 -> -2147483648
float -> int:    -2147483648 -> -2147483648
float -> int:      -16777218 -> -16777218
float -> int:      -16777216 -> -16777216
float -> int:      -16777215 -> -16777215
float -> int:      +16777215 -> +16777215
float -> int:      +16777216 -> +16777216
float -> int:      +16777218 -> +16777218
float -> int:    +2147483648 -> +2147483647
float -> int:    +2147483904 -> +2147483647
double -> int:    -2147483649 -> -2147483648
double -> int:    -2147483648 -> -2147483648
double -> int: -2147483647.75 -> -2147483647
double -> int: -2147483647.25 -> -2147483647
double -> int:    -2147483647 -> -2147483647
double -> int:    +2147483647 -> +2147483647
double -> int: +2147483647.25 -> +2147483647
double -> int: +2147483647.75 -> +2147483647
double -> int:    +2147483648 -> +2147483647
double -> int:    +2147483649 -> +2147483647
double -> unsigned:             -1 -> 0
double -> unsigned:             +1 -> 1
double -> unsigned:    +4294967295 -> 4294967295
double -> unsigned: +4294967295.25 -> 4294967295
double -> unsigned: +4294967295.75 -> 4294967295
double -> unsigned:    +4294967296 -> 4294967295
double -> unsigned:    +4294967297 -> 4294967295
Run Code Online (Sandbox Code Playgroud)