我试图了解并发内核执行的工作原理.我写了一个简单的程序来试图理解它.内核将使用2个流填充2D数组.当有1个流,没有并发时,我得到了正确的结果.当我尝试使用2个流,尝试并发时,我得到了错误的结果.我相信它与内存传输有关,因为我不太确定我是否正确或我设置内核的方式.编程指南对我来说不够好.出于我的目的,我需要Matlab来调用内核.
据我了解,主程序将:
这是我试图使用的代码.
concurrentKernel.cpp
__global__ void concurrentKernel(int const width,
int const streamIdx,
double *array)
{
int thread = (blockIdx.x * blockDim.x) + threadIdx.x;;
for (int i = 0; i < width; i ++)
{
array[thread*width+i] = thread+i*width+1;
// array[thread*width+i+streamIdx] = thread+i*width+streamIdx*width/2;
}
}
Run Code Online (Sandbox Code Playgroud)
concurrentMexFunction.cu
#include <stdio.h>
#include <math.h>
#include "mex.h"
/* Kernel function */
#include "concurrentKernel.cpp"
void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
mxArray *prhs[])
{
int const numberOfStreams = 2; // set number of streams to use here.
cudaError_t cudaError;
int offset;
int width, height, fullSize, streamSize;
width = 512;
height = 512;
fullSize = height*width;
streamSize = (int)(fullSize/numberOfStreams);
mexPrintf("fullSize: %d, streamSize: %d\n",fullSize, streamSize);
/* Return the populated array */
double *returnedArray;
plhs[0] = mxCreateDoubleMatrix(height, width, mxREAL);
returnedArray = mxGetPr(plhs[0]);
cudaStream_t stream[numberOfStreams];
for (int i = 0; i < numberOfStreams; i++)
{
cudaStreamCreate(&stream[i]);
}
/* host memory */
double *hostArray;
cudaError = cudaMallocHost(&hostArray,sizeof(double)*fullSize); // full size of array.
if (cudaError != cudaSuccess) {mexPrintf("hostArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
hostArray[i*width+j] = -1.0;
}
}
/* device memory */
double *deviceArray;
cudaError = cudaMalloc( (void **)&deviceArray,sizeof(double)*streamSize); // size of array for each stream.
if (cudaError != cudaSuccess) {mexPrintf("deviceArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
for (int i = 0; i < numberOfStreams; i++)
{
offset = i;//*streamSize;
mexPrintf("offset: %d, element: %d\n",offset*sizeof(double),offset);
cudaMemcpyAsync(deviceArray, hostArray+offset, sizeof(double)*streamSize, cudaMemcpyHostToDevice, stream[i]);
if (cudaError != cudaSuccess) {mexPrintf("deviceArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
concurrentKernel<<<1, 512, 0, stream[i]>>>(width, i, deviceArray);
cudaMemcpyAsync(returnedArray+offset, deviceArray, sizeof(double)*streamSize, cudaMemcpyDeviceToHost, stream[i]);
if (cudaError != cudaSuccess) {mexPrintf("returnedArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
mexPrintf("returnedArray[offset]: %g, [end]: %g\n",returnedArray[offset/sizeof(double)],returnedArray[(i+1)*streamSize-1]);
}
for (int i = 0; i < numberOfStreams; i++)
{
cudaStreamDestroy(stream[i]);
}
cudaFree(hostArray);
cudaFree(deviceArray);
}
Run Code Online (Sandbox Code Playgroud)
当有2个流时,结果是一个零数组,这让我觉得它我的内存有问题.谁能解释我做错了什么?如果有人需要帮助从Matlab编译和运行这些,我可以提供命令来执行此操作.
更新:
for (int i = 0; i < numberOfStreams; i++)
{
offset = i*streamSize;
mexPrintf("offset: %d, element: %d\n",offset*sizeof(double),offset);
cudaMemcpyAsync(deviceArray, hostArray+offset, sizeof(double)*streamSize, cudaMemcpyHostToDevice, stream[i]);
if (cudaError != cudaSuccess) {mexPrintf("deviceArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
concurrentKernel<<<1, 512, 0, stream[i]>>>(width, i, deviceArray);
}
cudaDeviceSynchronize();
for (int i = 0; i < numberOfStreams; i++)
{
offset = i*streamSize;
mexPrintf("offset: %d, element: %d\n",offset*sizeof(double),offset);
cudaMemcpyAsync(returnedArray+offset, deviceArray, sizeof(double)*streamSize, cudaMemcpyDeviceToHost, stream[i]);
if (cudaError != cudaSuccess) {mexPrintf("returnedArray memory allocation failed\n********** Error: %s **********\n",cudaGetErrorString(cudaError)); return; }
mexPrintf("returnedArray[offset]: %g, [end]: %g\n",returnedArray[offset/sizeof(double)],returnedArray[(i+1)*streamSize-1]);
cudaStreamDestroy(stream[i]);
}
Run Code Online (Sandbox Code Playgroud)
您需要记住,与流一起使用的API是完全异步的,因此控制会立即返回到调用主机线程.如果您没有在运行异步操作的GPU和主机之间插入某种同步点,则无法保证您在流中排队的操作实际上已完成.在你的例子中,这意味着需要这样的东西:
for (int i = 0; i < numberOfStreams; i++)
{
offset = i;//*streamSize;
mexPrintf("offset: %d, element: %d\n",offset*sizeof(double),offset);
cudaMemcpyAsync(deviceArray, hostArray+offset, sizeof(double)*streamSize,
cudaMemcpyHostToDevice, stream[i]);
concurrentKernel<<<1, 512, 0, stream[i]>>>(width, i, deviceArray);
cudaMemcpyAsync(returnedArray+offset, deviceArray, sizeof(double)*streamSize,
cudaMemcpyDeviceToHost, stream[i]);
}
// Host thread waits here until both kernels and copies are finished
cudaDeviceSynchronize();
for (int i = 0; i < numberOfStreams; i++)
{
mexPrintf("returnedArray[offset]: %g, [end]: %g\n",returnedArray[offset/sizeof(double)],returnedArray[(i+1)*streamSize-1]);
cudaStreamDestroy(stream[i]);
}
Run Code Online (Sandbox Code Playgroud)
这里的关键是在尝试检查主机内存中的结果之前,需要确保两个内存传输都已完成.您的原始代码和更新都不会这样做.