Rap*_*oth 19 python matplotlib scipy
我有许多元组(par1,par2),即通过多次重复实验获得的二维参数空间中的点.
我正在寻找计算和可视化置信椭圆的可能性(不确定这是否是正确的术语).这是我在网上找到的一个示例图,用于显示我的意思:

来源:blogspot.ch/2011/07/classification-and-discrimination-with.html
所以原则上我必须将多元正态分布拟合到数据点的二维直方图.有人可以帮我这个吗?
Joe*_*ton 36
听起来你只是想要分散点的2-sigma椭圆?
如果是这样,请考虑这样的事情(从这里的一些代码:https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
def plot_point_cov(points, nstd=2, ax=None, **kwargs):
"""
Plots an `nstd` sigma ellipse based on the mean and covariance of a point
"cloud" (points, an Nx2 array).
Parameters
----------
points : An Nx2 array of the data points.
nstd : The radius of the ellipse in numbers of standard deviations.
Defaults to 2 standard deviations.
ax : The axis that the ellipse will be plotted on. Defaults to the
current axis.
Additional keyword arguments are pass on to the ellipse patch.
Returns
-------
A matplotlib ellipse artist
"""
pos = points.mean(axis=0)
cov = np.cov(points, rowvar=False)
return plot_cov_ellipse(cov, pos, nstd, ax, **kwargs)
def plot_cov_ellipse(cov, pos, nstd=2, ax=None, **kwargs):
"""
Plots an `nstd` sigma error ellipse based on the specified covariance
matrix (`cov`). Additional keyword arguments are passed on to the
ellipse patch artist.
Parameters
----------
cov : The 2x2 covariance matrix to base the ellipse on
pos : The location of the center of the ellipse. Expects a 2-element
sequence of [x0, y0].
nstd : The radius of the ellipse in numbers of standard deviations.
Defaults to 2 standard deviations.
ax : The axis that the ellipse will be plotted on. Defaults to the
current axis.
Additional keyword arguments are pass on to the ellipse patch.
Returns
-------
A matplotlib ellipse artist
"""
def eigsorted(cov):
vals, vecs = np.linalg.eigh(cov)
order = vals.argsort()[::-1]
return vals[order], vecs[:,order]
if ax is None:
ax = plt.gca()
vals, vecs = eigsorted(cov)
theta = np.degrees(np.arctan2(*vecs[:,0][::-1]))
# Width and height are "full" widths, not radius
width, height = 2 * nstd * np.sqrt(vals)
ellip = Ellipse(xy=pos, width=width, height=height, angle=theta, **kwargs)
ax.add_artist(ellip)
return ellip
if __name__ == '__main__':
#-- Example usage -----------------------
# Generate some random, correlated data
points = np.random.multivariate_normal(
mean=(1,1), cov=[[0.4, 9],[9, 10]], size=1000
)
# Plot the raw points...
x, y = points.T
plt.plot(x, y, 'ro')
# Plot a transparent 3 standard deviation covariance ellipse
plot_point_cov(points, nstd=3, alpha=0.5, color='green')
plt.show()
Run Code Online (Sandbox Code Playgroud)

请参阅如何绘制协方差误差椭圆.
这是python的实现:
import numpy as np
from scipy.stats import norm, chi2
def cov_ellipse(cov, q=None, nsig=None, **kwargs):
"""
Parameters
----------
cov : (2, 2) array
Covariance matrix.
q : float, optional
Confidence level, should be in (0, 1)
nsig : int, optional
Confidence level in unit of standard deviations.
E.g. 1 stands for 68.3% and 2 stands for 95.4%.
Returns
-------
width, height, rotation :
The lengths of two axises and the rotation angle in degree
for the ellipse.
"""
if q is not None:
q = np.asarray(q)
elif nsig is not None:
q = 2 * norm.cdf(nsig) - 1
else:
raise ValueError('One of `q` and `nsig` should be specified.')
r2 = chi2.ppf(q, 2)
val, vec = np.linalg.eigh(cov)
width, height = 2 * sqrt(val[:, None] * r2)
rotation = np.degrees(arctan2(*vec[::-1, 0]))
return width, height, rotation
Run Code Online (Sandbox Code Playgroud)
在Joe Kington的回答中,标准偏差的含义是错误的.通常我们使用1,2西格玛为68%,95%置信水平,但他的答案中的2西格玛椭圆不包含95%的总分布概率.正确的方法是使用卡方分布来估算椭圆大小,如帖子所示.
| 归档时间: |
|
| 查看次数: |
19200 次 |
| 最近记录: |