Gre*_*gor 11 performance r dataframe
我正在预先分配一个大数据框,以便稍后填写,我通常会这样做NA
:
n <- 1e6
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
Run Code Online (Sandbox Code Playgroud)
如果我事先指定数据类型,我想知道它是否会让事情变得更快,所以我测试了
f1 <- function() {
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
a$c2 <- 1:n
a$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
f2 <- function() {
b <- data.frame(c1 = 1:n, c2 = numeric(n), c3 = character(n))
b$c2 <- 1:n
b$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
> system.time(f1())
user system elapsed
0.219 0.042 0.260
> system.time(f2())
user system elapsed
1.018 0.052 1.072
Run Code Online (Sandbox Code Playgroud)
所以它实际上要慢得多!我再次尝试使用因子列,并且差异不是接近2倍而不是4倍,但我很好奇为什么这个更慢,并且想知道是否适合初始化数据类型而不是NA
.
-
编辑:Flodel指出1:n是整数,而不是数字.通过该校正,运行时几乎相同; 当然,错误地指定数据类型并在以后更改它会很痛苦!
Dav*_*son 13
将任何数据分配给大型数据框都需要时间.如果您要在向量中一次性分配数据(正如您所希望的那样),那么根本不在原始定义中分配c2和c3列要快得多.例如:
f3 <- function() {
c <- data.frame(c1 = 1:n)
c$c2 <- 1:n
c$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
print(system.time(f1()))
# user system elapsed
# 0.194 0.023 0.216
print(system.time(f2()))
# user system elapsed
# 0.336 0.037 0.374
print(system.time(f3()))
# user system elapsed
# 0.057 0.007 0.063
Run Code Online (Sandbox Code Playgroud)
原因是当您预先分配时,n
会创建一列长度.例如
str(data.frame(x=1:2, y = character(2)))
## 'data.frame': 2 obs. of 2 variables:
## $ x: int 1 2
## $ y: Factor w/ 1 level "": 1 1
Run Code Online (Sandbox Code Playgroud)
请注意,该character
列已转换为factor
比设置慢的列stringsAsFactors = F
.
mne*_*nel 11
@David Robinson的答案是正确的,但我会在这里添加一些分析,以展示如何调查为什么有些东西比你想象的慢.
在这里做的最好的事情是做一些分析,看看被调用的东西,这可以给出一个线索,为什么有些东西调用比其他东西慢
library(profr)
profr(f1())
## Read 9 items
## f level time start end leaf source
## 8 f1 1 0.16 0.00 0.16 FALSE <NA>
## 9 data.frame 2 0.04 0.00 0.04 TRUE base
## 10 $<- 2 0.02 0.04 0.06 FALSE base
## 11 sample 2 0.04 0.06 0.10 TRUE base
## 12 $<- 2 0.06 0.10 0.16 FALSE base
## 13 $<-.data.frame 3 0.12 0.04 0.16 TRUE base
profr(f2())
## Read 15 items
## f level time start end leaf source
## 8 f2 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.frame 2 0.12 0.00 0.12 TRUE base
## 10 : 2 0.02 0.12 0.14 TRUE base
## 11 $<- 2 0.02 0.18 0.20 FALSE base
## 12 sample 2 0.02 0.20 0.22 TRUE base
## 13 $<- 2 0.06 0.22 0.28 FALSE base
## 14 as.data.frame 3 0.08 0.04 0.12 FALSE base
## 15 $<-.data.frame 3 0.10 0.18 0.28 TRUE base
## 16 as.data.frame.character 4 0.08 0.04 0.12 FALSE base
## 17 factor 5 0.08 0.04 0.12 FALSE base
## 18 unique 6 0.06 0.04 0.10 FALSE base
## 19 match 6 0.02 0.10 0.12 TRUE base
## 20 unique.default 7 0.06 0.04 0.10 TRUE base
profr(f3())
## Read 4 items
## f level time start end leaf source
## 8 f3 1 0.06 0.00 0.06 FALSE <NA>
## 9 $<- 2 0.02 0.00 0.02 FALSE base
## 10 sample 2 0.04 0.02 0.06 TRUE base
## 11 $<-.data.frame 3 0.02 0.00 0.02 TRUE base
Run Code Online (Sandbox Code Playgroud)
显然f2()
是慢f1()
是有很多的character
,以factor
转换和重建levels
等.
为了有效使用内存,我建议使用该data.table
软件包.这避免了(尽可能)对象的内部复制
library(data.table)
f4 <- function(){
f <- data.table(c1 = 1:n)
f[,c2:=1L:n]
f[,c3:=sample(LETTERS, size= n, replace = TRUE)]
}
system.time(f1())
## user system elapsed
## 0.15 0.02 0.18
system.time(f2())
## user system elapsed
## 0.19 0.00 0.19
system.time(f3())
## user system elapsed
## 0.09 0.00 0.09
system.time(f4())
## user system elapsed
## 0.04 0.00 0.04
Run Code Online (Sandbox Code Playgroud)
请注意,使用data.table
您可以一次添加两列(并通过引用)
# Thanks to @Thell for pointing this out.
f[,`:=`(c('c2','c3'), list(1L:n, sample(LETTERS,n, T))), with = F]
Run Code Online (Sandbox Code Playgroud)
n= 1e7
f1 <- function() {
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
a$c2 <- 1:n
a$c3 <- sample(LETTERS, size = n, replace = TRUE)
a
}
f2 <- function() {
b <- data.frame(c1 = 1:n, c2 = numeric(n), c3 = character(n))
b$c2 <- 1:n
b$c3 <- sample(LETTERS, size = n, replace = TRUE)
b
}
f3 <- function() {
c <- data.frame(c1 = 1:n)
c$c2 <- 1:n
c$c3 <- sample(LETTERS, size = n, replace = TRUE)
c
}
f4 <- function() {
f <- data.table(c1 = 1:n)
f[, `:=`(c2, 1L:n)]
f[, `:=`(c3, sample(LETTERS, size = n, replace = TRUE))]
}
system.time(f1())
## user system elapsed
## 1.62 0.34 2.13
system.time(f2())
## user system elapsed
## 2.14 0.66 2.79
system.time(f3())
## user system elapsed
## 0.78 0.25 1.03
system.time(f4())
## user system elapsed
## 0.37 0.08 0.46
profr(f1())
## Read 105 items
## f level time start end leaf source
## 8 f1 1 2.08 0.00 2.08 FALSE <NA>
## 9 data.frame 2 0.66 0.00 0.66 FALSE base
## 10 : 2 0.02 0.66 0.68 TRUE base
## 11 $<- 2 0.32 0.84 1.16 FALSE base
## 12 sample 2 0.40 1.16 1.56 TRUE base
## 13 $<- 2 0.32 1.76 2.08 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.12 0.54 0.66 TRUE base
## 17 $<-.data.frame 3 1.24 0.84 2.08 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f2())
## Read 145 items
## f level time start end leaf source
## 8 f2 1 2.88 0.00 2.88 FALSE <NA>
## 9 data.frame 2 1.40 0.00 1.40 FALSE base
## 10 : 2 0.04 1.40 1.44 TRUE base
## 11 $<- 2 0.36 1.64 2.00 FALSE base
## 12 sample 2 0.40 2.00 2.40 TRUE base
## 13 $<- 2 0.36 2.52 2.88 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 numeric 3 0.06 0.02 0.08 TRUE base
## 16 character 3 0.04 0.08 0.12 TRUE base
## 17 as.data.frame 3 1.06 0.12 1.18 FALSE base
## 18 unlist 3 0.20 1.20 1.40 TRUE base
## 19 $<-.data.frame 3 1.24 1.64 2.88 TRUE base
## 20 as.data.frame.integer 4 0.04 0.12 0.16 TRUE base
## 21 as.data.frame.numeric 4 0.16 0.18 0.34 TRUE base
## 22 as.data.frame.character 4 0.78 0.40 1.18 FALSE base
## 23 factor 5 0.74 0.40 1.14 FALSE base
## 24 as.data.frame.vector 5 0.04 1.14 1.18 TRUE base
## 25 unique 6 0.38 0.40 0.78 FALSE base
## 26 match 6 0.32 0.78 1.10 TRUE base
## 27 unique.default 7 0.38 0.40 0.78 TRUE base
profr(f3())
## Read 37 items
## f level time start end leaf source
## 8 f3 1 0.72 0.00 0.72 FALSE <NA>
## 9 data.frame 2 0.10 0.00 0.10 FALSE base
## 10 : 2 0.02 0.10 0.12 TRUE base
## 11 $<- 2 0.08 0.14 0.22 FALSE base
## 12 sample 2 0.26 0.22 0.48 TRUE base
## 13 $<- 2 0.16 0.56 0.72 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.02 0.08 0.10 TRUE base
## 17 $<-.data.frame 3 0.58 0.14 0.72 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f4())
## Read 15 items
## f level time start end leaf source
## 8 f4 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.table 2 0.02 0.00 0.02 FALSE data.table
## 10 [ 2 0.26 0.02 0.28 FALSE base
## 11 : 3 0.02 0.00 0.02 TRUE base
## 12 [.data.table 3 0.26 0.02 0.28 FALSE <NA>
## 13 eval 4 0.26 0.02 0.28 FALSE base
## 14 eval 5 0.26 0.02 0.28 FALSE base
## 15 : 6 0.02 0.02 0.04 TRUE base
## 16 sample 6 0.24 0.04 0.28 TRUE base
Run Code Online (Sandbox Code Playgroud)