Gor*_*man 7 sql row r sqldf data.table
我正在寻找一种从更大的表中提取大量行的快速方法.我的表顶部如下:
> head(dbsnp)
snp gene distance
rs5 rs5 KRIT1 1
rs6 rs6 CYP51A1 1
rs7 rs7 LOC401387 1
rs8 rs8 CDK6 1
rs9 rs9 CDK6 1
rs10 rs10 CDK6 1
Run Code Online (Sandbox Code Playgroud)
尺寸:
> dim(dbsnp)
[1] 11934948 3
Run Code Online (Sandbox Code Playgroud)
我想选择列表中包含rownames的行:
> head(features)
[1] "rs1367830" "rs5915027" "rs2060113" "rs1594503" "rs1116848" "rs1835693"
> length(features)
[1] 915635
Run Code Online (Sandbox Code Playgroud)
毫不奇怪,这样做的直接方式temptable = dbsnp[features,]需要相当长的时间.
我一直在研究如何通过R中的sqldf包来实现这一点.我认为这可能会更快.不幸的是,我无法弄清楚如何在SQL中选择具有某些rownames的行.
谢谢.
Jus*_*tin 10
该data.table解决方案:
library(data.table)
dbsnp <- structure(list(snp = c("rs5", "rs6", "rs7", "rs8", "rs9", "rs10"
), gene = c("KRIT1", "CYP51A1", "LOC401387", "CDK6", "CDK6",
"CDK6"), distance = c(1L, 1L, 1L, 1L, 1L, 1L)), .Names = c("snp",
"gene", "distance"), class = "data.frame", row.names = c("rs5",
"rs6", "rs7", "rs8", "rs9", "rs10"))
DT <- data.table(dbsnp, key='snp')
features <- c('rs5', 'rs7', 'rs9')
DT[features]
snp gene distance
1: rs5 KRIT1 1
2: rs7 LOC401387 1
3: rs9 CDK6 1
Run Code Online (Sandbox Code Playgroud)
使用sqldf您将需要rownames = TRUE您可以使用row_names以下命令查询rownames :
library(sqldf)
## input
test<-read.table(header=T,text=" snp gene distance
rs5 rs5 KRIT1 1
rs6 rs6 CYP51A1 1
rs7 rs7 LOC401387 1
rs8 rs8 CDK6 1
rs9 rs9 CDK6 1
rs10 rs10 CDK6 1
")
features<-c("rs5","rs7","rs10")
## calculate
inVar <- toString(shQuote(features, type = "csh")) # 'rs5','rs7','rs10'
fn$sqldf("SELECT * FROM test t
WHERE t.row_names IN ($inVar)"
, row.names = TRUE)
## result
# snp gene distance
#rs5 rs5 KRIT1 1
#rs7 rs7 LOC401387 1
#rs10 rs10 CDK6 1
Run Code Online (Sandbox Code Playgroud)
更新:或者,如果fet是一个数据框,其features列包含要查找的所需项目:
fet <- data.frame(features)
sqldf("SELECT t.* FROM test t
WHERE t.row_names IN (SELECT features FROM fet)"
, row.names = TRUE)
Run Code Online (Sandbox Code Playgroud)
此外,如果数据足够大,我们可以使用索引加快速度.有关此信息和其他详细信息,请参阅sqldf主页.
大多数人最初尝试的方式是:
dbsnp[ rownames(dbsnp) %in% features, ] # which is probably slower than your code
Run Code Online (Sandbox Code Playgroud)
因为你说这需要很长时间,所以我怀疑你已经超出了 RAM 容量并开始使用虚拟内存。您应该关闭系统,然后仅使用 R 作为正在运行的应用程序重新启动,看看是否可以避免“进入虚拟化”。