我在R中运行滚动回归,使用存储在a中的数据data.table.
我有一个工作版本,但它感觉就像一个黑客 - 我真的使用我从zoo包中知道的,没有任何魔法data.table...因此,它感觉比它应该慢.
结合约书亚的建议 - 下面 - 通过使用lm.fit而不是使用约12倍的加速lm.
(修订版)示例代码:
require(zoo)
require(data.table)
require(rbenchmark)
set.seed(1)
tt <- seq(as.Date("2011-01-01"), as.Date("2012-01-01"), by="day")
px <- rnorm(366, 95, 1)
DT <- data.table(period=tt, pvec=px)
dtt <- DT[,tnum:=as.numeric(period)][, list(pvec, tnum)]
dtx <- as.matrix(DT[,tnum:=as.numeric(period)][, tnum2:= tnum^2][, int:=1][, list(pvec, int, tnum, tnum2)])
rollreg <- function(dd) coef(lm(pvec ~ tnum + I(tnum^2), data=as.data.frame(dd)))
rollreg.fit <- function(dd) coef(lm.fit(y=dd[,1], x=dd[,-1]))
rr <- function(dd) rollapplyr(dd, width=20, FUN = rollreg, by.column=FALSE)
rr.fit <- function(dd) rollapplyr(dd, width=20, FUN = rollreg.fit, by.column=FALSE)
bmk <- benchmark(rr(dtt), rr.fit(dtx),
columns = c('test', 'elapsed', 'relative'),
replications = 10,
order = 'elapsed'
)
test elapsed relative
2 rr.fit(dtx) 0.48 1.0000
1 rr(dtt) 5.85 12.1875
Run Code Online (Sandbox Code Playgroud)
试图应用这里和这里显示的知识,我编写了以下简单的滚动回归函数,我认为它使用了一些data.table操作的速度.
请注意,问题稍微不同(并且更加真实):采用向量,添加滞后,并对自身进行回归.这类AR型问题非常广泛.
我在这里分享它可能是有用的,我确信它可以改进(我会随着我的改进而更新):
require(data.table)
set.seed(1)
x <- rnorm(1000)
DT <- data.table(x)
DTin <- data.table(x)
lagDT <- function(DTin, varname, l=5)
{
i = 0
while ( i < l){
expr <- parse(text =
paste0(varname, '_L', (i+1),
':= c(rep(NA, (1+i)),', varname, '[-((length(', varname, ') - i):length(', varname, '))])'
)
)
DTin[, eval(expr)]
i <- i + 1
}
return(DTin)
}
rollRegDT <- function(DTin, varname, k=20, l=5)
{
adj <- k + l - 1
.x <- 1:(nrow(DTin)-adj)
DTin[, int:=1]
dtReg <- function(dd) coef(lm.fit(y=dd[-c(1:l),1], x=dd[-c(1:l),-1]))
eleNum <- nrow(DTin)*(l+1)
outMatx <- matrix(rep(NA, eleNum), ncol = (l+1))
colnames(outMatx) <- c('intercept', 'L1', 'L2', 'L3', 'L4', 'L5')
for (i in .x){
dt_m <- as.matrix(lagDT(DTin[i:(i+adj), ], varname, l))
outMatx[(i+(adj)),] <- dtReg(dt_m)
}
return(outMatx)
}
rollCoef <- rollRegDT(DT, varname='x')
Run Code Online (Sandbox Code Playgroud)
不是我所知道的; data.table滚动窗口没有任何特殊功能.其他套餐已经实现了滚动功能的载体,使他们能够在被使用j的data.table.如果它们不够有效,并且没有包有更快的版本(?),那么就是自己编写更快的版本并且(当然)贡献它们的情况:要么是现有的包,要么创建自己的包.
相关问题(请点击链接中的链接):
使用data.table加速rollapply
R data.table滑动窗口
滚动R中多列的回归