Octave:逻辑回归:fmincg和fminunc之间的差异

hqt*_*hqt 42 algorithm machine-learning octave neural-network

我经常fminunc用于逻辑回归问题.我已经在网上读过Andrew Ng使用的,fmincg而不是fminunc相同的论点.结果不同,往往fmincg更精确,但不是太多.(我将fmincg函数fminunc的结果与同一数据进行比较)

所以,我的问题是:这两个功能有什么区别?每个功能实现了什么算法?(现在,我只是使用这些功能而不确切知道它们是如何工作的).

谢谢 :)

car*_*aug 42

您将不得不查看代码内部,fmincg因为它不是Octave的一部分.经过一些搜索,我发现它是Coursera机器学习课程提供的函数文件,作为家庭作业的一部分.阅读有关此问题的评论和答案,以获得有关算法的讨论.


gre*_*egS 23

与其他答案相反,这里建议fmincg和fminunc之间的主要区别在于准确性或速度,对某些应用程序而言,最重要的区别可能是内存效率.在Coursera的Andrew Ng的机器学习课程的编程练习4(即神经网络训练)中,ex4.m关于fmincg的评论是

%% ===================第8部分:训练NN ===================
%你现在已经实施训练神经
网络所需的所有代码.为了训练你的神经网络,我们现在将使用"fmincg",
%是一个与"fminunc"类似的函数.回想一下,这些
%高级优化器能够有效地训练我们的成本函数,
只要我们为它们提供梯度计算.

像原版海报一样,我也很好奇ex4.m的结果可能会因fminunc而不是fmincg而有所不同.所以我试着替换fmincg调用

options = optimset('MaxIter', 50);
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
Run Code Online (Sandbox Code Playgroud)

以下调用fminunc

options = optimset('GradObj', 'on', 'MaxIter', 50);
[nn_params, cost, exit_flag] = fminunc(costFunction, initial_nn_params, options);
Run Code Online (Sandbox Code Playgroud)

但从Windows上运行的32位版本的Octave获得以下错误消息:

错误:内存耗尽或请求的大小对于Octave索引类型的范围太大 - 尝试返回提示

在Windows上运行的32位MATLAB版本提供了更详细的错误消息:

使用查找
内存不足时出错.键入HELP MEMORY以获取选项.
spones中的错误(第14行)
[i,j] = find(S);
颜色错误(第26行)
J = spones(J);
sfminbx中的错误(第155行)
group = color(Hstr,p);
fminunc中的错误(第408行)
[x,FVAL,〜,EXITFLAG,OUTPUT,GRAD,HESSIAN] = sfminbx(funfcn,x,l,u,...
ex4中的错误(第205行)
[nn_params,cost,exit_flag] = fminunc(costFunction,initial_nn_params,options);

我的笔记本电脑上的MATLAB内存命令报告:

最大可能阵列:2046 MB(2.146e + 09字节)*
可用于所有阵列的内存:3402 MB(3.568e + 09字节)**
MATLAB使用的内存:373 MB(3.910e + 08字节)
物理内存(RAM) :3561 MB(3.734e + 09字节)
*受可用的连续虚拟地址空间限制.
**受虚拟地址空间限制.

我以前认为Ng教授选择使用fmincg训练ex4.m神经网络(有400个输入功能,401包括偏置输入)以提高训练速度.但是,现在我相信他使用fmincg的原因是为了提高内存效率,以便在32位版本的Octave/MATLAB上进行训练.关于获得在Windows操作系统上运行的64位Octave版本的必要工作的简短讨论就在这里.


Edw*_*xon 13

根据Andrew Ng本人的说法,fmincg用来不是为了获得更准确的结果(记住,你的成本函数在任何一种情况下都是相同的,你的假设不是更简单或更复杂)但是因为它更有效地做了特别复杂的梯度下降假设.他自己似乎使用fminunc假设几乎没有特征的地方,但fmincg它有数百个.

  • 功能较少。 (2认同)

Eri*_*ski 8

为什么fmincg有效?

这是源代码的副本,其中包含解释所使用的各种算法的注释.这是一种愚蠢的行为,因为在学习区分狗和椅子时,孩子的大脑会做同样的事情.

这是fmincg.m的Octave源.

function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied.  As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application.  All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%

% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
    length = options.MaxIter;
else
    length = 100;
end

RHO = 0.01;                            % a bunch of constants for line searches
SIG = 0.5;       % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1;    % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0;                    % extrapolate maximum 3 times the current bracket
MAX = 20;                         % max 20 function evaluations per line search
RATIO = 100;                                      % maximum allowed slope ratio

argstr = ['feval(f, X'];                      % compose string used to call function
for i = 1:(nargin - 3)
  argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];

if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];

i = 0;                                            % zero the run length counter
ls_failed = 0;                             % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr);                      % get function value and gradient
i = i + (length<0);                                            % count epochs?!
s = -df1;                                        % search direction is steepest
d1 = -s'*s;                                                 % this is the slope
z1 = red/(1-d1);                                  % initial step is red/(|s|+1)

while i < abs(length)                                      % while not finished
  i = i + (length>0);                                      % count iterations?!

  X0 = X; f0 = f1; df0 = df1;                   % make a copy of current values
  X = X + z1*s;                                             % begin line search
  [f2 df2] = eval(argstr);
  i = i + (length<0);                                          % count epochs?!
  d2 = df2'*s;
  f3 = f1; d3 = d1; z3 = -z1;             % initialize point 3 equal to point 1
  if length>0, M = MAX; else M = min(MAX, -length-i); end
  success = 0; limit = -1;                     % initialize quanteties
  while 1
    while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
      limit = z1;                                         % tighten the bracket
      if f2 > f1
        z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3);                 % quadratic fit
      else
        A = 6*(f2-f3)/z3+3*(d2+d3);                                 % cubic fit
        B = 3*(f3-f2)-z3*(d3+2*d2);
        z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A;       % numerical error possible - ok!
      end
      if isnan(z2) | isinf(z2)
        z2 = z3/2;                  % if we had a numerical problem then bisect
      end
      z2 = max(min(z2, INT*z3),(1-INT)*z3);  % don't accept too close to limits
      z1 = z1 + z2;                                           % update the step
      X = X + z2*s;
      [f2 df2] = eval(argstr);
      M = M - 1; i = i + (length<0);                           % count epochs?!
      d2 = df2'*s;
      z3 = z3-z2;                    % z3 is now relative to the location of z2
    end
    if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
      break;                                                % this is a failure
    elseif d2 > SIG*d1
      success = 1; break;                                             % success
    elseif M == 0
      break;                                                          % failure
    end
    A = 6*(f2-f3)/z3+3*(d2+d3);                      % make cubic extrapolation
    B = 3*(f3-f2)-z3*(d3+2*d2);
    z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3));        % num. error possible - ok!
    if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0   % num prob or wrong sign?
      if limit < -0.5                               % if we have no upper limit
        z2 = z1 * (EXT-1);                 % the extrapolate the maximum amount
      else
        z2 = (limit-z1)/2;                                   % otherwise bisect
      end
    elseif (limit > -0.5) & (z2+z1 > limit)          % extraplation beyond max?
      z2 = (limit-z1)/2;                                               % bisect
    elseif (limit < -0.5) & (z2+z1 > z1*EXT)       % extrapolation beyond limit
      z2 = z1*(EXT-1.0);                           % set to extrapolation limit
    elseif z2 < -z3*INT
      z2 = -z3*INT;
    elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT))   % too close to limit?
      z2 = (limit-z1)*(1.0-INT);
    end
    f3 = f2; d3 = d2; z3 = -z2;                  % set point 3 equal to point 2
    z1 = z1 + z2; X = X + z2*s;                      % update current estimates
    [f2 df2] = eval(argstr);
    M = M - 1; i = i + (length<0);                             % count epochs?!
    d2 = df2'*s;
  end                                                      % end of line search

  if success                                         % if line search succeeded
    f1 = f2; fX = [fX' f1]';
    fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
    s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2;      % Polack-Ribiere direction
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    d2 = df1'*s;
    if d2 > 0                                      % new slope must be negative
      s = -df1;                              % otherwise use steepest direction
      d2 = -s'*s;
    end
    z1 = z1 * min(RATIO, d1/(d2-realmin));          % slope ratio but max RATIO
    d1 = d2;
    ls_failed = 0;                              % this line search did not fail
  else
    X = X0; f1 = f0; df1 = df0;  % restore point from before failed line search
    if ls_failed | i > abs(length)          % line search failed twice in a row
      break;                             % or we ran out of time, so we give up
    end
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    s = -df1;                                                    % try steepest
    d1 = -s'*s;
    z1 = 1/(1-d1);
    ls_failed = 1;                                    % this line search failed
  end
  if exist('OCTAVE_VERSION')
    fflush(stdout);
  end
end
fprintf('\n');
Run Code Online (Sandbox Code Playgroud)