适用于ADT的Haskell Zipper,具有许多构造函数

MFl*_*mer 6 haskell zipper algebraic-data-types

我有几个ADT代表Haskell中的一个简单的几何树.关于让我的操作类型与树结构分离的事情困扰着我.我正在考虑让Tree类型包含运算符的构造函数,它看起来似乎更干净.我看到的一个问题是我的Zipper实现必须改变以反映所有这些新的可能的构造函数.有没有办法解决?还是我错过了一些重要的概念?总的来说,我觉得我无法掌握如何在Haskell中一般构建我的程序.我理解大多数概念,ADT,类型类,monad,但我还不了解大局.谢谢.

module FRep.Tree
   (Tree(?)
   ,Primitive(?)
   ,UnaryOp(?)
   ,BinaryOp(?)
   ,TernaryOp(?)
   ,sphere
   ,block
   ,transform
   ,union
   ,intersect
   ,subtract
   ,eval
   ) where



import Data.Vect.Double
--import qualified Data.Foldable as F
import Prelude hiding (subtract)
--import Data.Monoid


data Tree = Leaf    Primitive
          | Unary   UnaryOp   Tree
          | Binary  BinaryOp  Tree Tree
          | Ternary TernaryOp Tree Tree Tree
          deriving (Show)

sphere ?  Double ? Tree
sphere a = Leaf (Sphere a)

block ?  Vec3 ? Tree
block v = Leaf (Block v)

transform ?  Proj4 ? Tree ? Tree
transform m t1 = Unary (Transform m) t1

union ?  Tree ? Tree ? Tree
union t1 t2 = Binary Union t1 t2

intersect ?  Tree ? Tree ? Tree
intersect t1 t2 = Binary Intersect t1 t2

subtract ?  Tree ? Tree ? Tree
subtract t1 t2 = Binary Subtract t1 t2


data Primitive = Sphere { radius ?  Double }
               | Block  { size   ?  Vec3   }
               | Cone   { radius ?  Double
                        , height ?  Double }
               deriving (Show)


data UnaryOp = Transform Proj4
             deriving (Show)

data BinaryOp = Union
              | Intersect
              | Subtract
              deriving (Show)

data TernaryOp = Blend Double Double Double
               deriving (Show)


primitive ?  Primitive ? Vec3 ? Double
primitive (Sphere r) (Vec3 x y z) = r - sqrt (x*x + y*y + z*z)
primitive (Block (Vec3 w h d)) (Vec3 x y z) = maximum [inRange w x, inRange h y, inRange d z]
   where inRange a b = abs b - a/2.0
primitive (Cone r h) (Vec3 x y z) = undefined





unaryOp ?  UnaryOp ? Vec3 ? Vec3
unaryOp (Transform m) v = trim (v' .* (fromProjective (inverse m)))
   where v' = extendWith 1 v ?  Vec4


binaryOp ?  BinaryOp ? Double ? Double ? Double
binaryOp Union f1 f2     = f1 + f2 + sqrt (f1*f1 + f2*f2)
binaryOp Intersect f1 f2 = f1 + f2 - sqrt (f1*f1 + f2*f2)
binaryOp Subtract f1 f2  = binaryOp Intersect f1 (negate f2)


ternaryOp ?  TernaryOp ? Double ? Double ? Double ? Double
ternaryOp (Blend a b c) f1 f2 f3 = undefined


eval ?  Tree ? Vec3 ? Double
eval (Leaf a) v             = primitive a v
eval (Unary a t) v          = eval t (unaryOp a v)
eval (Binary a t1 t2) v     = binaryOp a (eval t1 v) (eval t2 v)
eval (Ternary a t1 t2 t3) v = ternaryOp a (eval t1 v) (eval t2 v) (eval t3 v)


--Here's the Zipper--------------------------


module FRep.Tree.Zipper
   (Zipper
   ,down
   ,up
   ,left
   ,right
   ,fromZipper
   ,toZipper
   ,getFocus
   ,setFocus
   ) where


import FRep.Tree



type Zipper = (Tree, Context)

data Context = Root
             | Unary1   UnaryOp   Context
             | Binary1  BinaryOp  Context Tree
             | Binary2  BinaryOp  Tree    Context
             | Ternary1 TernaryOp Context Tree    Tree
             | Ternary2 TernaryOp Tree    Context Tree
             | Ternary3 TernaryOp Tree    Tree    Context


down ?  Zipper ? Maybe (Zipper)
down (Leaf p, c)             = Nothing
down (Unary o t1, c)         = Just (t1, Unary1 o c)
down (Binary o t1 t2, c)     = Just (t1, Binary1 o c t2)
down (Ternary o t1 t2 t3, c) = Just (t1, Ternary1 o c t2 t3)


up ?  Zipper ? Maybe (Zipper)
up (t1, Root)               = Nothing
up (t1, Unary1 o c)         = Just (Unary o t1, c)
up (t1, Binary1 o c t2)     = Just (Binary o t1 t2, c)
up (t2, Binary2 o t1 c)     = Just (Binary o t1 t2, c)
up (t1, Ternary1 o c t2 t3) = Just (Ternary o t1 t2 t3, c)
up (t2, Ternary2 o t1 c t3) = Just (Ternary o t1 t2 t3, c)
up (t3, Ternary3 o t1 t2 c) = Just (Ternary o t1 t2 t3, c)


left ?  Zipper ? Maybe (Zipper)
left (t1, Root)               = Nothing
left (t1, Unary1 o c)         = Nothing
left (t1, Binary1 o c t2)     = Nothing
left (t2, Binary2 o t1 c)     = Just (t1, Binary1 o c t2)
left (t1, Ternary1 o c t2 t3) = Nothing
left (t2, Ternary2 o t1 c t3) = Just (t1, Ternary1 o c t2 t3)
left (t3, Ternary3 o t1 t2 c) = Just (t2, Ternary2 o t1 c t3)


right ?  Zipper ? Maybe (Zipper)
right (t1, Root)               = Nothing
right (t1, Unary1 o c)         = Nothing
right (t1, Binary1 o c t2)     = Just (t2, Binary2 o t1 c)
right (t2, Binary2 o t1 c)     = Nothing
right (t1, Ternary1 o c t2 t3) = Just (t2, Ternary2 o t1 c t3)
right (t2, Ternary2 o t1 c t3) = Just (t3, Ternary3 o t1 t2 c)
right (t3, Ternary3 o t1 t2 c) = Nothing


fromZipper ?  Zipper ? Tree
fromZipper z = f z where
   f ?  Zipper ? Tree
   f (t1, Root)               = t1
   f (t1, Unary1 o c)         = f (Unary o t1, c)
   f (t1, Binary1 o c t2)     = f (Binary o t1 t2, c)
   f (t2, Binary2 o t1 c)     = f (Binary o t1 t2, c)
   f (t1, Ternary1 o c t2 t3) = f (Ternary o t1 t2 t3, c)
   f (t2, Ternary2 o t1 c t3) = f (Ternary o t1 t2 t3, c)
   f (t3, Ternary3 o t1 t2 c) = f (Ternary o t1 t2 t3, c)


toZipper ?  Tree ? Zipper
toZipper t = (t, Root)


getFocus ?  Zipper ? Tree
getFocus (t, _) = t


setFocus ?  Tree ? Zipper ? Zipper
setFocus t (_, c) = (t, c)
Run Code Online (Sandbox Code Playgroud)

jbe*_*man 2

这可能不会触及您 API 设计问题的核心,但也许会给您一些想法。

我编写了两个基于Lens 的通用拉链库。镜头封装了类型的“解构/重组”,为您提供了上下文中内部值的视图,这允许“获取”和“设置”例如数据类型中的特定字段。您可能会发现这种拉链的通用配方更容易接受。

如果这听起来很有趣,您应该查看的库是zippo这是一个非常小的库,但有一些奇特的部分,因此您可能对这里的简短演练感兴趣。

好处是:拉链是异构的,允许您“向下移动”不同的类型(例如,您可以将注意力集中在radiusa 上Sphere,或者向下移动到一些Primitive您尚未想到的新递归类型)。此外,类型检查器将确保您的“向上移动”永远不会让您越过结构的顶部;唯一Maybe需要的地方是通过 sum 类型“向下”移动。

不太好的事情是:我目前正在使用自己的镜头库zippo,并且还不支持自动导出镜头。因此,在理想的情况下,您不会手动编写镜头,因此当您的类型发生变化时不必更改任何内容Tree。自从我写这篇文章以来,镜头库的情况已经发生了很大的变化,所以当我有机会看到新的热点或更新的旧热点时,我可能会过渡到使用 ekmett 的一个。

代码

如果这没有类型检查,请原谅我:

import Data.Lens.Zipper
import Data.Yall

-- lenses on your tree, ideally these would be derived automatically from record 
-- names you provided
primitive :: Tree :~> Primitive
primitive = lensM g s
    where g (Leaf p) = Just p
          g _ = Nothing
          s (Leaf p) = Just Leaf
          s _ = Nothing

unaryOp :: Tree :~> UnaryOp
unaryOp = undefined -- same idea as above

tree1 :: Tree :~> Tree
tree1 = lensM g s where
    g (Unary _ t1) = Just t1
    g (Binary _ t1 _) = Just t1
    g (Ternary _ t1 _ _) = Just t1
    g _ = Nothing
    s (Unary o _) = Just (Unary o)
    s (Binary o _ t2) = Just (\t1-> Binary o t1 t2)
    s (Ternary o _ t2 t3) = Just (\t1-> Ternary o t1 t2 t3)
    s _ = Nothing
-- ...etc.
Run Code Online (Sandbox Code Playgroud)

然后使用拉链可能看起来像:

t :: Tree
t = Binary Union (Leaf (Sphere 2)) (Leaf (Sphere 3))

z :: Zipper Top Tree
z = zipper t

-- stupid example that only succeeds on focus shaped like 't', but you can pass a 
-- zippered structure of any depth
incrementSpheresThenReduce :: Zipper n Tree -> Maybe (Zipper n Tree)
incrementSpheresThenReduce z = do
    z1 <- move (radiusL . primitive . tree1) z
    let z' = moveUp $ modf (+1) z1
    z2 <- move (radiusL . primitive . tree2) z'
    let z'' = moveUp $ modf (+1) z2
    return $ modf (Leaf . performOp) z''
Run Code Online (Sandbox Code Playgroud)