我有以下数据框架
x <- read.table(text = " id1 id2 val1 val2
1 a x 1 9
2 a x 2 4
3 a y 3 5
4 a y 4 9
5 b x 1 7
6 b y 4 4
7 b x 3 9
8 b y 2 8", header = TRUE)
Run Code Online (Sandbox Code Playgroud)
我想计算按id1和id2分组的val1和val2的平均值,并同时计算每个id1-id2组合的行数.我可以单独执行每个计算:
# calculate mean
aggregate(. ~ id1 + id2, data = x, FUN = mean)
# count rows
aggregate(. ~ id1 + id2, data = x, FUN = length)
Run Code Online (Sandbox Code Playgroud)
为了在一次通话中进行两次计算,我试过了
do.call("rbind", aggregate(. ~ id1 + id2, data = x, FUN = function(x) data.frame(m = mean(x), n = length(x))))
Run Code Online (Sandbox Code Playgroud)
但是,我收到一个乱码输出和警告:
# m n
# id1 1 2
# id2 1 1
# 1.5 2
# 2 2
# 3.5 2
# 3 2
# 6.5 2
# 8 2
# 7 2
# 6 2
# Warning message:
# In rbind(id1 = c(1L, 2L, 1L, 2L), id2 = c(1L, 1L, 2L, 2L), val1 = list( :
# number of columns of result is not a multiple of vector length (arg 1)
Run Code Online (Sandbox Code Playgroud)
我可以使用plyr包,但是当数据集的大小增加时,我的数据集非常大并且plyr非常慢(几乎不可用).
如何aggregate
在一次通话中使用或其他功能执行多项计算?
42-*_*42- 143
您可以一步完成所有操作并获得适当的标签:
> aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) )
# id1 id2 val1.mn val1.n val2.mn val2.n
# 1 a x 1.5 2.0 6.5 2.0
# 2 b x 2.0 2.0 8.0 2.0
# 3 a y 3.5 2.0 7.0 2.0
# 4 b y 3.0 2.0 6.0 2.0
Run Code Online (Sandbox Code Playgroud)
这将创建一个包含两个id列和两个矩阵列的数据框:
str( aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) ) )
'data.frame': 4 obs. of 4 variables:
$ id1 : Factor w/ 2 levels "a","b": 1 2 1 2
$ id2 : Factor w/ 2 levels "x","y": 1 1 2 2
$ val1: num [1:4, 1:2] 1.5 2 3.5 3 2 2 2 2
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mn" "n"
$ val2: num [1:4, 1:2] 6.5 8 7 6 2 2 2 2
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mn" "n"
Run Code Online (Sandbox Code Playgroud)
正如下面的@ lord.garbage所指出的那样,可以通过使用将其转换为带有"简单"列的数据框 do.call(data.frame, ...)
str( do.call(data.frame, aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) ) )
)
'data.frame': 4 obs. of 6 variables:
$ id1 : Factor w/ 2 levels "a","b": 1 2 1 2
$ id2 : Factor w/ 2 levels "x","y": 1 1 2 2
$ val1.mn: num 1.5 2 3.5 3
$ val1.n : num 2 2 2 2
$ val2.mn: num 6.5 8 7 6
$ val2.n : num 2 2 2 2
Run Code Online (Sandbox Code Playgroud)
这是LHS上多个变量的语法:
aggregate(cbind(val1, val2) ~ id1 + id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) )
Run Code Online (Sandbox Code Playgroud)
Mat*_*wle 28
鉴于此问题:
我可以使用plyr包,但是当数据集的大小增加时,我的数据集非常大并且plyr非常慢(几乎不可用).
然后在data.table
(1.9.4+
)你可以尝试:
> DT
id1 id2 val1 val2
1: a x 1 9
2: a x 2 4
3: a y 3 5
4: a y 4 9
5: b x 1 7
6: b y 4 4
7: b x 3 9
8: b y 2 8
> DT[ , .(mean(val1), mean(val2), .N), by = .(id1, id2)] # simplest
id1 id2 V1 V2 N
1: a x 1.5 6.5 2
2: a y 3.5 7.0 2
3: b x 2.0 8.0 2
4: b y 3.0 6.0 2
> DT[ , .(val1.m = mean(val1), val2.m = mean(val2), count = .N), by = .(id1, id2)] # named
id1 id2 val1.m val2.m count
1: a x 1.5 6.5 2
2: a y 3.5 7.0 2
3: b x 2.0 8.0 2
4: b y 3.0 6.0 2
> DT[ , c(lapply(.SD, mean), count = .N), by = .(id1, id2)] # mean over all columns
id1 id2 val1 val2 count
1: a x 1.5 6.5 2
2: a y 3.5 7.0 2
3: b x 2.0 8.0 2
4: b y 3.0 6.0 2
Run Code Online (Sandbox Code Playgroud)
对于时间比较aggregate
(用于问题和所有其他3个答案),data.table
看看
这个基准(agg
和agg.x
案例).
flo*_*del 11
你可以添加一个count
列,聚合sum
,然后缩小以获得mean
:
x$count <- 1
agg <- aggregate(. ~ id1 + id2, data = x,FUN = sum)
agg
# id1 id2 val1 val2 count
# 1 a x 3 13 2
# 2 b x 4 16 2
# 3 a y 7 14 2
# 4 b y 6 12 2
agg[c("val1", "val2")] <- agg[c("val1", "val2")] / agg$count
agg
# id1 id2 val1 val2 count
# 1 a x 1.5 6.5 2
# 2 b x 2.0 8.0 2
# 3 a y 3.5 7.0 2
# 4 b y 3.0 6.0 2
Run Code Online (Sandbox Code Playgroud)
它具有保留列名和创建单个count
列的优点.
nei*_*fws 10
也许你想合并?
x.mean <- aggregate(. ~ id1+id2, p, mean)
x.len <- aggregate(. ~ id1+id2, p, length)
merge(x.mean, x.len, by = c("id1", "id2"))
id1 id2 val1.x val2.x val1.y val2.y
1 a x 1.5 6.5 2 2
2 a y 3.5 7.0 2 2
3 b x 2.0 8.0 2 2
4 b y 3.0 6.0 2 2
Run Code Online (Sandbox Code Playgroud)
Jaa*_*aap 10
使用dplyr
包你可以通过使用来实现这一点summarise_all
.有了这个汇总功能可以应用其他功能(在这种情况下mean
和n()
)到每个非分组列:
x %>%
group_by(id1, id2) %>%
summarise_all(funs(mean, n()))
Run Code Online (Sandbox Code Playgroud)
这使:
id1 id2 val1_mean val2_mean val1_n val2_n
1 a x 1.5 6.5 2 2
2 a y 3.5 7.0 2 2
3 b x 2.0 8.0 2 2
4 b y 3.0 6.0 2 2
Run Code Online (Sandbox Code Playgroud)
如果您不想将函数应用于所有非分组列,请指定应应用它们的列,或者使用summarise_at()
函数排除非想要的减号:
# inclusion
x %>%
group_by(id1, id2) %>%
summarise_at(vars(val1, val2), funs(mean, n()))
# exclusion
x %>%
group_by(id1, id2) %>%
summarise_at(vars(-val2), funs(mean, n()))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
85665 次 |
最近记录: |