use*_*017 97 python mysql data-structures pandas
任何有关此问题的帮助将不胜感激.
所以基本上我想对我的SQL数据库运行查询并将返回的数据存储为Pandas数据结构.
我附加了查询代码.
我正在阅读关于Pandas的文档,但是我有问题确定我的查询的返回类型.
我试图打印查询结果,但它没有提供任何有用的信息.
谢谢!!!!
from sqlalchemy import create_engine
engine2 = create_engine('mysql://THE DATABASE I AM ACCESSING')
connection2 = engine2.connect()
dataid = 1022
resoverall = connection2.execute("
SELECT
sum(BLABLA) AS BLA,
sum(BLABLABLA2) AS BLABLABLA2,
sum(SOME_INT) AS SOME_INT,
sum(SOME_INT2) AS SOME_INT2,
100*sum(SOME_INT2)/sum(SOME_INT) AS ctr,
sum(SOME_INT2)/sum(SOME_INT) AS cpc
FROM daily_report_cooked
WHERE campaign_id = '%s'", %dataid)
Run Code Online (Sandbox Code Playgroud)
所以我想知道我的变量"resoverall"的格式/数据类型是什么,以及如何使用PANDAS数据结构.
bea*_*rdc 118
编辑:2015年3月
如下所述,pandas现在使用SQLAlchemy来读取(read_sql)和插入(to_sql)数据库.以下应该有效
import pandas as pd
df = pd.read_sql(sql, cnxn)
Run Code Online (Sandbox Code Playgroud)
上一个答案: 来自类似问题的 mikebmassey
import pyodbc
import pandas.io.sql as psql
cnxn = pyodbc.connect(connection_info)
cursor = cnxn.cursor()
sql = "SELECT * FROM TABLE"
df = psql.frame_query(sql, cnxn)
cnxn.close()
Run Code Online (Sandbox Code Playgroud)
Dan*_*kov 100
这是完成这项工作的最短代码:
from pandas import DataFrame
df = DataFrame(resoverall.fetchall())
df.columns = resoverall.keys()
Run Code Online (Sandbox Code Playgroud)
你可以像保罗的回答一样更好地解析这些类型.
Nat*_*uld 33
如果您使用的是SQLAlchemy的ORM而不是表达式语言,您可能会发现自己想要将类型的对象转换sqlalchemy.orm.query.Query为Pandas数据框.
最干净的方法是从查询的语句属性中获取生成的SQL,然后使用pandas的read_sql()方法执行它.例如,从名为的Query对象开始query:
df = pd.read_sql(query.statement, query.session.bind)
Run Code Online (Sandbox Code Playgroud)
Pau*_*l H 23
熊猫现在有一个read_sql功能.你肯定想要使用它.
我无法帮助你使用SQLAlchemy - 我总是根据需要使用pyodbc,MySQLdb或psychopg2.但是当这样做时,一个像下面那样简单的功能可以满足我的需求:
import decimal
import pydobc
import numpy as np
import pandas
cnn, cur = myConnectToDBfunction()
cmd = "SELECT * FROM myTable"
cur.execute(cmd)
dataframe = __processCursor(cur, dataframe=True)
def __processCursor(cur, dataframe=False, index=None):
'''
Processes a database cursor with data on it into either
a structured numpy array or a pandas dataframe.
input:
cur - a pyodbc cursor that has just received data
dataframe - bool. if false, a numpy record array is returned
if true, return a pandas dataframe
index - list of column(s) to use as index in a pandas dataframe
'''
datatypes = []
colinfo = cur.description
for col in colinfo:
if col[1] == unicode:
datatypes.append((col[0], 'U%d' % col[3]))
elif col[1] == str:
datatypes.append((col[0], 'S%d' % col[3]))
elif col[1] in [float, decimal.Decimal]:
datatypes.append((col[0], 'f4'))
elif col[1] == datetime.datetime:
datatypes.append((col[0], 'O4'))
elif col[1] == int:
datatypes.append((col[0], 'i4'))
data = []
for row in cur:
data.append(tuple(row))
array = np.array(data, dtype=datatypes)
if dataframe:
output = pandas.DataFrame.from_records(array)
if index is not None:
output = output.set_index(index)
else:
output = array
return output
Run Code Online (Sandbox Code Playgroud)
Tho*_*gdt 15
对于那些使用mysql连接器的人,您可以使用此代码作为开始.(感谢@Daniel Velkov)
使用的参考:
import pandas as pd
import mysql.connector
# Setup MySQL connection
db = mysql.connector.connect(
host="<IP>", # your host, usually localhost
user="<USER>", # your username
password="<PASS>", # your password
database="<DATABASE>" # name of the data base
)
# You must create a Cursor object. It will let you execute all the queries you need
cur = db.cursor()
# Use all the SQL you like
cur.execute("SELECT * FROM <TABLE>")
# Put it all to a data frame
sql_data = pd.DataFrame(cur.fetchall())
sql_data.columns = cur.column_names
# Close the session
db.close()
# Show the data
print(sql_data.head())
Run Code Online (Sandbox Code Playgroud)
Lin*_*esa 14
# pip install mysql-connector-python
import mysql.connector
import pandas as pd
mydb = mysql.connector.connect(
host = 'host',
user = 'username',
passwd = 'pass',
database = 'db_name'
)
query = 'select * from table_name'
df = pd.read_sql(query, con = mydb)
print(df)
Run Code Online (Sandbox Code Playgroud)
# pip install pymysql
# pip install sqlalchemy
import pandas as pd
import sqlalchemy
engine = sqlalchemy.create_engine('mysql+pymysql://username:password@localhost:3306/db_name')
query = '''
select * from table_name
'''
df = pd.read_sql_query(query, engine)
print(df)
Run Code Online (Sandbox Code Playgroud)
这是我使用的代码.希望这可以帮助.
import pandas as pd
from sqlalchemy import create_engine
def getData():
# Parameters
ServerName = "my_server"
Database = "my_db"
UserPwd = "user:pwd"
Driver = "driver=SQL Server Native Client 11.0"
# Create the connection
engine = create_engine('mssql+pyodbc://' + UserPwd + '@' + ServerName + '/' + Database + "?" + Driver)
sql = "select * from mytable"
df = pd.read_sql(sql, engine)
return df
df2 = getData()
print(df2)
Run Code Online (Sandbox Code Playgroud)
这是对您的问题的简短回答:
from __future__ import print_function
import MySQLdb
import numpy as np
import pandas as pd
import xlrd
# Connecting to MySQL Database
connection = MySQLdb.connect(
host="hostname",
port=0000,
user="userID",
passwd="password",
db="table_documents",
charset='utf8'
)
print(connection)
#getting data from database into a dataframe
sql_for_df = 'select * from tabledata'
df_from_database = pd.read_sql(sql_for_df , connection)
Run Code Online (Sandbox Code Playgroud)
和 Nathan 一样,我经常想将 sqlalchemy 或 sqlsoup 查询的结果转储到 Pandas 数据框中。我自己的解决方案是:
query = session.query(tbl.Field1, tbl.Field2)
DataFrame(query.all(), columns=[column['name'] for column in query.column_descriptions])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
191266 次 |
| 最近记录: |