use*_*514 7 python traversal graph networkx
假设图中的树状结构如下networkx:
n-----n1----n11
| |----n12
| |----n13
| |----n131
|----n2 |
| |-----n21 X
| |-----n22 |
| |----n221
|----n3
n4------n41
n5
Run Code Online (Sandbox Code Playgroud)
谢谢.
图形构造:
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edges_from([('n', 'n1'), ('n', 'n2'), ('n', 'n3')])
>>> G.add_edges_from([('n4', 'n41'), ('n1', 'n11'), ('n1', 'n12'), ('n1', 'n13')])
>>> G.add_edges_from([('n2', 'n21'), ('n2', 'n22')])
>>> G.add_edges_from([('n13', 'n131'), ('n22', 'n221')])
>>> G.add_edges_from([('n131', 'n221'), ('n221', 'n131')]
>>> G.add_node('n5')
Run Code Online (Sandbox Code Playgroud)
使用out_degree函数查找包含子节点的所有节点:
>>> [k for k,v in G.out_degree().iteritems() if v > 0]
['n13', 'n', 'n131', 'n1', 'n22', 'n2', 'n221', 'n4']
Run Code Online (Sandbox Code Playgroud)
注意,n131和n221也出现在这里,因为它们彼此都有一个边缘.你可以根据需要过滤掉这些.
没有孩子的所有节点:
>>> [k for k,v in G.out_degree().iteritems() if v == 0]
['n12', 'n11', 'n3', 'n41', 'n21', 'n5']
Run Code Online (Sandbox Code Playgroud)所有孤立节点,即度为0的节点:
>>> [k for k,v in G.degree().iteritems() if v == 0]
['n5']
Run Code Online (Sandbox Code Playgroud)
要获取所有孤立"边缘",您可以获取图形的组件列表,过滤掉不包含的组件n,然后仅保留具有边缘的组件:
>>> [G.edges(component) for component in nx.connected_components(G.to_undirected()) if len(G.edges(component)) > 0 and 'n' not in component]
[[('n4', 'n41')]]
Run Code Online (Sandbox Code Playgroud)超过2个孩子的节点:
>>> [k for k,v in G.out_degree().iteritems() if v > 2]
['n', 'n1']
Run Code Online (Sandbox Code Playgroud)如果遍历树,则不会获得无限循环.NetworkX具有对此具有鲁棒性的遍历算法.