我有矩阵
A=[2 3 4 5 6 7;
7 6 5 4 3 2]
Run Code Online (Sandbox Code Playgroud)
我想要计算有多少元素的值大于3且小于6.
我可以想到几个方面:
count = numel(A( A(:)>3 & A(:)<6 )) %# (1)
count = length(A( A(:)>3 & A(:)<6 )) %# (2)
count = nnz( A(:)>3 & A(:)<6 ) %# (3)
count = sum( A(:)>3 & A(:)<6 ) %# (4)
Ac = A(:);
count = numel(A( Ac>3 & Ac<6 )) %# (5,6,7,8)
%# prevents double expansion
%# similar for length(), nnz(), sum(),
%# in the same order as (1)-(4)
count = numel(A( abs(A-(6+3)/2)<3/2 )) %# (9,10,11,12)
%# prevents double comparison and &
%# similar for length(), nnz(), sum()
%# in the same order as (1)-(4)
Run Code Online (Sandbox Code Playgroud)
那么,让我们测试一下最快的方法.测试代码:
A = randi(10, 50);
tic
for ii = 1:1e5
%# method is inserted here
end
toc
Run Code Online (Sandbox Code Playgroud)
结果(最好的5次运行,全部以秒为单位):
%# ( 1): 2.981446
%# ( 2): 3.006602
%# ( 3): 3.077083
%# ( 4): 2.619057
%# ( 5): 3.011029
%# ( 6): 2.868021
%# ( 7): 3.149641
%# ( 8): 2.457988
%# ( 9): 1.675575
%# (10): 1.675384
%# (11): 2.442607
%# (12): 1.222510
Run Code Online (Sandbox Code Playgroud)
所以这似乎count = sum(( abs(A(:)-(6+3)/2)<3/2 ));是去这里的最佳方式.
在个人方面:我没想到比较比Matlab中的算术慢 - 有没有人知道对此的解释?
另外:为什么nnz这么慢sum?我想现在我知道比较慢于算术...