alt*_*alt 45 javascript sorting jquery levenshtein-distance
所以我有一个随机的javascript数组...
[@ larry,@ nicholas,@ notch]等
它们都以@符号开头.我想用Levenshtein距离对它们进行排序,以便列表顶部的那些最接近搜索项.目前,我有一些使用jQuery的javascript,.grep()
使用javascript .match()
方法围绕按键输入的搜索词:
(自首次发布以来编辑的代码)
limitArr = $.grep(imTheCallback, function(n){
return n.match(searchy.toLowerCase())
});
modArr = limitArr.sort(levenshtein(searchy.toLowerCase(), 50))
if (modArr[0].substr(0, 1) == '@') {
if (atRes.childred('div').length < 6) {
modArr.forEach(function(i){
atRes.append('<div class="oneResult">' + i + '</div>');
});
}
} else if (modArr[0].substr(0, 1) == '#') {
if (tagRes.children('div').length < 6) {
modArr.forEach(function(i){
tagRes.append('<div class="oneResult">' + i + '</div>');
});
}
}
$('.oneResult:first-child').addClass('active');
$('.oneResult').click(function(){
window.location.href = 'http://hashtag.ly/' + $(this).html();
});
Run Code Online (Sandbox Code Playgroud)
它还有一些if语句,用于检测数组是否包含主题标签(#)或提及(@).忽略这一点.这imTheCallback
是名称数组,无论是主题标签还是提及,然后modArr
是排序的数组.然后.atResults
,.tagResults
元素是每次在数组中追加的元素,这将根据输入的搜索词形成一个名称列表.
我也有Levenshtein距离算法:
var levenshtein = function(min, split) {
// Levenshtein Algorithm Revisited - WebReflection
try {
split = !("0")[0]
} catch(i) {
split = true
};
return function(a, b) {
if (a == b)
return 0;
if (!a.length || !b.length)
return b.length || a.length;
if (split) {
a = a.split("");
b = b.split("")
};
var len1 = a.length + 1,
len2 = b.length + 1,
I = 0,
i = 0,
d = [[0]],
c, j, J;
while (++i < len2)
d[0][i] = i;
i = 0;
while (++i < len1) {
J = j = 0;
c = a[I];
d[i] = [i];
while(++j < len2) {
d[i][j] = min(d[I][j] + 1, d[i][J] + 1, d[I][J] + (c != b[J]));
++J;
};
++I;
};
return d[len1 - 1][len2 - 1];
}
}(Math.min, false);
Run Code Online (Sandbox Code Playgroud)
我如何使用算法(或类似的算法)到我当前的代码中进行排序而没有糟糕的性能?
更新:
所以我现在正在使用James Westgate的Lev Dist功能.快速工作WAYYYY.所以性能得到了解决,现在的问题是将它与源码一起使用......
modArr = limitArr.sort(function(a, b){
levDist(a, searchy)
levDist(b, searchy)
});
Run Code Online (Sandbox Code Playgroud)
我现在的问题是对使用该.sort()
方法的一般理解.非常感谢帮助,谢谢.
谢谢!
Jam*_*ate 101
几年前我写了一个内联拼写检查程序并实现了Levenshtein算法 - 因为它是内联的,对于IE8我做了很多性能优化.
var levDist = function(s, t) {
var d = []; //2d matrix
// Step 1
var n = s.length;
var m = t.length;
if (n == 0) return m;
if (m == 0) return n;
//Create an array of arrays in javascript (a descending loop is quicker)
for (var i = n; i >= 0; i--) d[i] = [];
// Step 2
for (var i = n; i >= 0; i--) d[i][0] = i;
for (var j = m; j >= 0; j--) d[0][j] = j;
// Step 3
for (var i = 1; i <= n; i++) {
var s_i = s.charAt(i - 1);
// Step 4
for (var j = 1; j <= m; j++) {
//Check the jagged ld total so far
if (i == j && d[i][j] > 4) return n;
var t_j = t.charAt(j - 1);
var cost = (s_i == t_j) ? 0 : 1; // Step 5
//Calculate the minimum
var mi = d[i - 1][j] + 1;
var b = d[i][j - 1] + 1;
var c = d[i - 1][j - 1] + cost;
if (b < mi) mi = b;
if (c < mi) mi = c;
d[i][j] = mi; // Step 6
//Damerau transposition
if (i > 1 && j > 1 && s_i == t.charAt(j - 2) && s.charAt(i - 2) == t_j) {
d[i][j] = Math.min(d[i][j], d[i - 2][j - 2] + cost);
}
}
}
// Step 7
return d[n][m];
}
Run Code Online (Sandbox Code Playgroud)
Mar*_*Wit 13
我来到这个解决方案:
var levenshtein = (function() {
var row2 = [];
return function(s1, s2) {
if (s1 === s2) {
return 0;
} else {
var s1_len = s1.length, s2_len = s2.length;
if (s1_len && s2_len) {
var i1 = 0, i2 = 0, a, b, c, c2, row = row2;
while (i1 < s1_len)
row[i1] = ++i1;
while (i2 < s2_len) {
c2 = s2.charCodeAt(i2);
a = i2;
++i2;
b = i2;
for (i1 = 0; i1 < s1_len; ++i1) {
c = a + (s1.charCodeAt(i1) === c2 ? 0 : 1);
a = row[i1];
b = b < a ? (b < c ? b + 1 : c) : (a < c ? a + 1 : c);
row[i1] = b;
}
}
return b;
} else {
return s1_len + s2_len;
}
}
};
})();
Run Code Online (Sandbox Code Playgroud)
另见http://jsperf.com/levenshtein-distance/12
通过消除一些阵列使用获得了大多数速度.
更新:http://jsperf.com/levenshtein-distance/5
新版本摧毁了所有其他基准测试.我特别追逐Chromium/Firefox性能,因为我没有IE8/9/10测试环境,但优化应该适用于大多数浏览器.
Levenshtein距离
执行Levenshtein距离的矩阵可以一次又一次地重复使用.这是一个明显的优化目标(但要小心,这现在对字符串长度施加了限制(除非你动态调整矩阵的大小)).
在jsPerf Revision 5中没有追求优化的唯一选择是memoisation.根据您对Levenshtein Distance的使用情况,这可能会有很大帮助,但由于其特定的实现性而被省略.
// Cache the matrix. Note this implementation is limited to
// strings of 64 char or less. This could be altered to update
// dynamically, or a larger value could be used.
var matrix = [];
for (var i = 0; i < 64; i++) {
matrix[i] = [i];
matrix[i].length = 64;
}
for (var i = 0; i < 64; i++) {
matrix[0][i] = i;
}
// Functional implementation of Levenshtein Distance.
String.levenshteinDistance = function(__this, that, limit) {
var thisLength = __this.length, thatLength = that.length;
if (Math.abs(thisLength - thatLength) > (limit || 32)) return limit || 32;
if (thisLength === 0) return thatLength;
if (thatLength === 0) return thisLength;
// Calculate matrix.
var this_i, that_j, cost, min, t;
for (i = 1; i <= thisLength; ++i) {
this_i = __this[i-1];
for (j = 1; j <= thatLength; ++j) {
// Check the jagged ld total so far
if (i === j && matrix[i][j] > 4) return thisLength;
that_j = that[j-1];
cost = (this_i === that_j) ? 0 : 1; // Chars already match, no ++op to count.
// Calculate the minimum (much faster than Math.min(...)).
min = matrix[i - 1][j ] + 1; // Deletion.
if ((t = matrix[i ][j - 1] + 1 ) < min) min = t; // Insertion.
if ((t = matrix[i - 1][j - 1] + cost) < min) min = t; // Substitution.
matrix[i][j] = min; // Update matrix.
}
}
return matrix[thisLength][thatLength];
};
Run Code Online (Sandbox Code Playgroud)
Damerau-Levenshtein距离
jsperf.com/damerau-levenshtein-distance
Damerau-Levenshtein距离是对Levenshtein距离的一个小修改,包括换位.优化很少.
// Damerau transposition.
if (i > 1 && j > 1 && this_i === that[j-2] && this[i-2] === that_j
&& (t = matrix[i-2][j-2]+cost) < matrix[i][j]) matrix[i][j] = t;
Run Code Online (Sandbox Code Playgroud)
排序算法
这个答案的第二部分是选择合适的排序函数.我将很快将优化的排序功能上传到http://jsperf.com/sort.
归档时间: |
|
查看次数: |
18615 次 |
最近记录: |