nuw*_*way 15 algorithm geometry
我该怎么写这个函数?任何例子都赞赏
function isPointBetweenPoints(currPoint, point1, point2):Boolean {
var currX = currPoint.x;
var currY = currPoint.y;
var p1X = point1.x;
var p1y = point1.y;
var p2X = point2.x;
var p2y = point2.y;
//here I'm stuck
}
Run Code Online (Sandbox Code Playgroud)
AnT*_*AnT 41
假设point1
和point2
不同,首先检查点是否在线上.为此你只需要一个矢量point1 -> currPoint
和的"交叉产品" point1 -> point2
.
dxc = currPoint.x - point1.x;
dyc = currPoint.y - point1.y;
dxl = point2.x - point1.x;
dyl = point2.y - point1.y;
cross = dxc * dyl - dyc * dxl;
Run Code Online (Sandbox Code Playgroud)
当且仅当cross
等于零时,你的观点就在线上.
if (cross != 0)
return false;
Run Code Online (Sandbox Code Playgroud)
现在,正如你所知,这一点确实存在于线上,现在是时候检查它是否位于原始点之间.x
如果线条比"垂直"更"水平",则可以通过比较坐标来轻松完成,否则进行y
坐标
if (abs(dxl) >= abs(dyl))
return dxl > 0 ?
point1.x <= currPoint.x && currPoint.x <= point2.x :
point2.x <= currPoint.x && currPoint.x <= point1.x;
else
return dyl > 0 ?
point1.y <= currPoint.y && currPoint.y <= point2.y :
point2.y <= currPoint.y && currPoint.y <= point1.y;
Run Code Online (Sandbox Code Playgroud)
注意,如果输入数据是完整的,则上述算法是完全积分的,即它不需要整数输入的浮点计算.计算时要小心潜在的溢出cross
.
PS这个算法绝对精确,这意味着它会拒绝非常接近线但不精确在线上的点.有时这不是我们需要的.但这是一个不同的故事.
max*_*000 23
Distance(point1,currPoint)+Distance(currPoint,point2)==Distance(point1,point2)
Run Code Online (Sandbox Code Playgroud)
但是如果你有浮点值,要小心,它们的情况有所不同......
这与 JavaScript 无关。尝试以下算法,其中点 p1=point1 和 p2=point2,第三个点是 p3=currPoint:
v1 = p2 - p1
v2 = p3 - p1
v3 = p3 - p2
if (dot(v2,v1)>0 and dot(v3,v1)<0) return between
else return not between
Run Code Online (Sandbox Code Playgroud)
如果您想确保它也在 p1 和 p2 之间的线段上:
v1 = normalize(p2 - p1)
v2 = normalize(p3 - p1)
v3 = p3 - p2
if (fabs(dot(v2,v1)-1.0)<EPS and dot(v3,v1)<0) return between
else return not between
Run Code Online (Sandbox Code Playgroud)