Cha*_*han 6 c++ algorithm optimization motzkin-numbers
我想生成所有的Motzkin编号并存储在一个数组中.公式如下:

我目前的实施速度太慢了:
void generate_slow() {
mm[0] = 1;
mm[1] = 1;
mm[2] = 2;
mm[3] = 4;
mm[4] = 9;
ull result;
for (int i = 5; i <= MAX_NUMBERS; ++i) {
result = mm[i - 1];
for (int k = 0; k <= (i - 2); ++k) {
result = (result + ((mm[k] * mm[i - 2 - k]) % MODULO)) % MODULO;
}
mm[i] = result;
}
}
void generate_slightly_faster() {
mm[0] = 1;
mm[1] = 1;
mm[2] = 2;
mm[3] = 4;
mm[4] = 9;
ull result;
for (int i = 5; i <= MAX_NUMBERS; ++i) {
result = mm[i - 1];
for (int l = 0, r = i - 2; l <= r; ++l, --r) {
if (l != r) {
result = (result + (2 * (mm[l] * mm[r]) % MODULO)) % MODULO;
}
else {
result = (result + ((mm[l] * mm[r]) % MODULO)) % MODULO;
}
}
mm[i] = result;
}
}
Run Code Online (Sandbox Code Playgroud)
此外,我一直在为重复矩阵找到一个封闭的形式,以便我可以应用求幂平方.有谁能建议更好的算法?谢谢.
编辑我无法应用第二个公式,因为当模数为模时,除法不适用.的最大n为10,000这超出64位整数的范围内,所以答案是模数具有较大数目m,其中m= 10 ^ 14 + 7更大的整数库是不允许的.
警告:以下代码是错误的,因为它使用整数除法(例如 5/2 = 2 而不是 2.5)。请随意修复它!
这是使用动态规划的好机会。这与计算斐波那契数非常相似。
sample code:
cache = {}
cache[0] = 1
cache[1] = 1
def motzkin(n):
if n in cache:
return cache[n]
else:
result = 3*n*motzkin(n - 2)/(n + 3) + (2*n + 3)*motzkin(n - 1)/(n + 3)
cache[n] = result
return result
for i in range(10):
print i, motzkin(i)
print motzkin(1000)
"""
0 1
1 1
2 2
3 4
4 9
5 21
6 53
7 134
8 346
9 906
75794754010998216916857635442484411813743978100571902845098110153309261636322340168650370511949389501344124924484495394937913240955817164730133355584393471371445661970273727286877336588424618403572614523888534965515707096904677209192772199599003176027572021460794460755760991100028703368873821893050902166740481987827822643139384161298315488092901472934255559058881743019252022468893544043541453423967661847226330177828070589283132360685783010085347614855435535263090005810
"""
Run Code Online (Sandbox Code Playgroud)
问题是因为这些数字变得如此之大,如果你想达到非常高的数值,将它们全部存储在缓存中将会耗尽内存。那么最好使用 for 循环来记住前两项。如果你想找到许多数字的 motzkin 数,我建议你先对数字进行排序,然后当你在 for 循环中接近每个数字时,输出结果。
编辑:我创建了一个循环版本,但得到了与之前的递归函数不同的结果。至少有一个是错的!!希望您仍然能看到它是如何工作的并能够修复它!
def motzkin2(numbers):
numbers.sort() #assumes no duplicates
up_to = 0
if numbers[0] == 0:
yield 1
up_to += 1
if 1 in numbers[:2]:
yield 1
up_to += 1
max_ = numbers[-1]
m0 = 1
m1 = 1
for n in range(3, max_ + 1):
m2 = 3*n*m0/(n + 3) + (2*n + 3)*m1/(n + 3)
if n == numbers[up_to]:
yield n, m2
up_to += 1
m0, m1 = m1, m2
for pair in motzkin2([9,1,3,7, 1000]):
print pair
"""
1
(3, 2)
(7, 57)
(9, 387)
(1000, 32369017020536373226194869003219167142048874154652342993932240158930603189131202414912032918968097703139535871364048699365879645336396657663119183721377260183677704306107525149452521761041198342393710275721776790421499235867633215952014201548763282500175566539955302783908853370899176492629575848442244003609595110883079129592139070998456707801580368040581283599846781393163004323074215163246295343379138928050636671035367010921338262011084674447731713736715411737862658025L)
"""
Run Code Online (Sandbox Code Playgroud)