tag*_*oma 0 aggregate r time-series xts
我希望(算术上)平均每日数据,从而将我的每日时间序列转换为每周一次.
遵循这个主题:如何使用R计算每列数据的平均值?,我正在使用xts库.
# Averages daily time series into weekly time series
# where my source is a zoo object
source.w <- apply.weekly(source, colMeans)
Run Code Online (Sandbox Code Playgroud)
我遇到的问题是,这个系列的平均值是星期二到下一个星期一的数据.
我正在寻找从星期一到星期五平均每日数据的选项.
任何提示?
这里有一点:
# here is part of my data, from a "blé colza.txt" file
24/07/2012 250.5 499
23/07/2012 264.75 518.25
20/07/2012 269.25 525.25
19/07/2012 267 522.5
18/07/2012 261.25 517
17/07/2012 265.75 522.25
16/07/2012 264.25 523.25
13/07/2012 258.25 517
12/07/2012 253.75 513
11/07/2012 246.25 512.75
10/07/2012 248 515
09/07/2012 247 519.25
06/07/2012 243.25 508.25
05/07/2012 245 508.5
04/07/2012 236 500.5
03/07/2012 234 497.75
02/07/2012 234.25 489.75
29/06/2012 229 490.25
28/06/2012 229.75 487.25
27/06/2012 229.75 493
26/06/2012 226.5 486
25/06/2012 220 482.25
22/06/2012 214.25 472.5
21/06/2012 212 469.5
20/06/2012 210.25 473.75
19/06/2012 208 472.75
18/06/2012 206.75 462.5
15/06/2012 203 456.5
14/06/2012 205.25 460.5
13/06/2012 205.25 465.25
12/06/2012 205.25 469
11/06/2012 208 471.5
08/06/2012 208 468.5
07/06/2012 208 471.25
06/06/2012 208 467
05/06/2012 208 458.75
04/06/2012 208 457.5
01/06/2012 208 463.5
31/05/2012 208 466.75
30/05/2012 208 468
29/05/2012 212.75 469.75
28/05/2012 212.75 469.75
25/05/2012 212.75 465.5
# Loads external libraries
library("zoo") # or require("zoo")
library("xts") # or require("xts")
# Loads data as a zoo object
source <- read.zoo("blé colza.txt", sep=",", dec=".", header=T, na.strings="NA", format="%d/%m/%Y")
# Averages daily time series into weekly time series
# https://stackoverflow.com/questions/11129562/how-does-one-compute-the-mean-of-weekly- data-by-column-using-r
source.w <- apply.weekly(source, colMeans)
Run Code Online (Sandbox Code Playgroud)
mrdwab的回答恰好起作用,因为它们与OP共享时区(或其特征).为了显示:
Lines <-
"24/07/2012 250.5 499
23/07/2012 264.75 518.25
20/07/2012 269.25 525.25
19/07/2012 267 522.5
18/07/2012 261.25 517
17/07/2012 265.75 522.25
16/07/2012 264.25 523.25
13/07/2012 258.25 517
12/07/2012 253.75 513
11/07/2012 246.25 512.75
10/07/2012 248 515
09/07/2012 247 519.25
06/07/2012 243.25 508.25
05/07/2012 245 508.5
04/07/2012 236 500.5
03/07/2012 234 497.75
02/07/2012 234.25 489.75
29/06/2012 229 490.25
28/06/2012 229.75 487.25
27/06/2012 229.75 493
26/06/2012 226.5 486
25/06/2012 220 482.25
22/06/2012 214.25 472.5
21/06/2012 212 469.5
20/06/2012 210.25 473.75
19/06/2012 208 472.75
18/06/2012 206.75 462.5
15/06/2012 203 456.5
14/06/2012 205.25 460.5
13/06/2012 205.25 465.25
12/06/2012 205.25 469
11/06/2012 208 471.5
08/06/2012 208 468.5
07/06/2012 208 471.25
06/06/2012 208 467
05/06/2012 208 458.75
04/06/2012 208 457.5
01/06/2012 208 463.5
31/05/2012 208 466.75
30/05/2012 208 468
29/05/2012 212.75 469.75
28/05/2012 212.75 469.75
25/05/2012 212.75 465.5"
# Get R's timezone information (from ?Sys.timezone)
tzfile <- file.path(R.home("share"), "zoneinfo", "zone.tab")
tzones <- read.delim(tzfile, row.names = NULL, header = FALSE,
col.names = c("country", "coords", "name", "comments"),
as.is = TRUE, fill = TRUE, comment.char = "#")
# Run the analysis on each timezone
out <- list()
library(xts)
for(i in seq_along(tzones$name)) {
tzn <- tzones$name[i]
Sys.setenv(TZ=tzn)
con <- textConnection(Lines)
Source <- read.zoo(con, format="%d/%m/%Y")
out[[tzn]] <- apply.weekly(Source, colMeans)
}
Run Code Online (Sandbox Code Playgroud)
现在您可以运行head(out,5)并查看某些输出因使用的时区而异:
head(out,5)
$`Europe/Andorra`
V2 V3
2012-05-27 212.75 467.625
2012-06-03 208.95 465.100
2012-06-10 208.00 467.400
2012-06-17 205.10 462.750
2012-06-24 212.90 474.150
2012-07-01 229.85 489.250
2012-07-08 241.05 506.850
2012-07-15 254.10 516.200
2012-07-22 265.60 521.050
2012-07-23 250.50 499.000
$`Asia/Dubai`
V2 V3
2012-05-27 212.75 467.625
2012-06-03 208.95 465.100
2012-06-10 208.00 467.400
2012-06-17 205.10 462.750
2012-06-24 212.90 474.150
2012-07-01 229.85 489.250
2012-07-08 241.05 506.850
2012-07-15 254.10 516.200
2012-07-22 265.60 521.050
2012-07-23 250.50 499.000
$`Asia/Kabul`
V2 V3
2012-05-27 212.75 467.625
2012-06-03 208.95 465.100
2012-06-10 208.00 467.400
2012-06-17 205.10 462.750
2012-06-24 212.90 474.150
2012-07-01 229.85 489.250
2012-07-08 241.05 506.850
2012-07-15 254.10 516.200
2012-07-22 265.60 521.050
2012-07-23 250.50 499.000
$`America/Antigua`
V2 V3
2012-05-25 212.750 465.500
2012-06-01 209.900 467.550
2012-06-08 208.000 464.600
2012-06-15 205.350 464.550
2012-06-22 210.250 470.200
2012-06-29 227.000 487.750
2012-07-06 238.500 500.950
2012-07-13 250.650 515.400
2012-07-20 265.500 522.050
2012-07-24 257.625 508.625
$`America/Anguilla`
V2 V3
2012-05-25 212.750 465.500
2012-06-01 209.900 467.550
2012-06-08 208.000 464.600
2012-06-15 205.350 464.550
2012-06-22 210.250 470.200
2012-06-29 227.000 487.750
2012-07-06 238.500 500.950
2012-07-13 250.650 515.400
2012-07-20 265.500 522.050
2012-07-24 257.625 508.625
Run Code Online (Sandbox Code Playgroud)
更强大的解决方案是确保正确表示您的时区,方法是使用Sys.setenv(TZ="<yourTZ>")全局indexTZ(Source) <- "<yourTZ>"设置或为每个单独的对象设置它.
| 归档时间: |
|
| 查看次数: |
3625 次 |
| 最近记录: |