发音性算法

Nei*_*man 3 php algorithm function

我正在努力寻找/创建一个可以确定随机5个字母组合的可读性的算法.

到目前为止,我发现的最接近的是来自这个3岁的StackOverflow线程:

衡量一个单词的可读性?

<?php
// Score: 1
echo pronounceability('namelet') . "\n";

// Score: 0.71428571428571
echo pronounceability('nameoic') . "\n";

function pronounceability($word) {
    static $vowels = array
        (
        'a',
        'e',
        'i',
        'o',
        'u',
        'y'
        );

    static $composites = array
        (
        'mm',
        'll',
        'th',
        'ing'
        );

    if (!is_string($word)) return false;

    // Remove non letters and put in lowercase
    $word = preg_replace('/[^a-z]/i', '', $word);
    $word = strtolower($word);

    // Special case
    if ($word == 'a') return 1;

    $len = strlen($word);

    // Let's not parse an empty string
    if ($len == 0) return 0;

    $score = 0;
    $pos = 0;

    while ($pos < $len) {
        // Check if is allowed composites
        foreach ($composites as $comp) {
                $complen = strlen($comp);

                if (($pos + $complen) < $len) {
                        $check = substr($word, $pos, $complen);

                        if ($check == $comp) {
                                $score += $complen;
                                $pos += $complen;
                                continue 2;
                        }
                }
        }

        // Is it a vowel? If so, check if previous wasn't a vowel too.
        if (in_array($word[$pos], $vowels)) {
                if (($pos - 1) >= 0 && !in_array($word[$pos - 1], $vowels)) {
                        $score += 1;
                        $pos += 1;
                        continue;
                }
        } else { // Not a vowel, check if next one is, or if is end of word
                if (($pos + 1) < $len && in_array($word[$pos + 1], $vowels)) {
                        $score += 2;
                        $pos += 2;
                        continue;
                } elseif (($pos + 1) == $len) {
                        $score += 1;
                        break;
                }
        }

        $pos += 1;
    }

    return $score / $len;
}
?>
Run Code Online (Sandbox Code Playgroud)

......但它远非完美,给出了一些相当奇怪的误报:

使用此功能,所有以下速率均可发音,(7/10以上)

  • ZTEDA
  • LLFDA
  • MMGDA
  • THHDA
  • RTHDA
  • XYHDA
  • VQIDA

可能比我聪明的人调整这个算法可能是这样的:

  • 'MM','LL'和'TH'仅在元音跟随或之前有效?
  • 连续3个或更多个辅音是禁忌,(除非第一个或最后一个是'R'或'L')
  • 你能想到的任何其他改进......

(我已经做了大量的研究/谷歌搜索,这似乎是每个人在过去3年中一直在引用/使用的主要发音功能,所以我确信更新,更精致的版本将受到赞赏更广泛的社区,而不仅仅是我!).

Xan*_*tix 6

根据关于"在字母上使用马尔可夫模型"的链接问题的建议

使用马尔可夫模型(当然是字母,而不是文字).单词的概率是发音容易度的一个很好的代理.

我想我会尝试一下并取得一些成功.

我的方法论

我将一个真正的5个字母的单词列表复制到一个文件中作为我的数据集(这里 ......嗯,实际上在这里).

然后我使用隐马尔可夫模型(基于One-gram,Bi-gram和Tri-gram)来预测目标词在该数据集中出现的可能性.

(通过某种语音转录作为其中一个步骤,可以获得更好的结果.)

首先,我计算数据集中字符序列的概率.

例如,如果"A"出现50次,并且数据集中只有250个字符,则"A"的概率为50/250或.2.

为bigrams'AB','AC'做同样的事......

为三卦'ABC','ABD'做同样的事......

基本上,我对"ABCDE"这个词的得分是由:

  • 概率('A')
  • 概率('B')
  • 概率('C')
  • 概率('D')
  • 概率('E')
  • 概率('AB')
  • 概率('BC')
  • 概率('CD')
  • 概率('DE')
  • 概率('ABC')
  • 概率('BCD')
  • 概率('CDE')

您可以将所有这些相乘以获得目标单词出现在数据集中的估计概率(但这非常小).

因此,我们将每个日志记录下来并将它们加在一起.

现在我们有一个分数来估计我们的目标词在数据集中出现的可能性.

我的代码

我编码这是C#,并发现大于负160的分数非常好.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Pronouncability
{

class Program
{
    public static char[] alphabet = new char[]{ 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z' };

    public static List<string> wordList = loadWordList(); //Dataset of 5-letter words

    public static Random rand = new Random();

    public const double SCORE_LIMIT = -160.00;

    /// <summary>
    /// Generates random words, until 100 of them are better than
    /// the SCORE_LIMIT based on a statistical score. 
    /// </summary>
    public static void Main(string[] args)
    {
        Dictionary<Tuple<char, char, char>, int> trigramCounts = new Dictionary<Tuple<char, char, char>, int>();

        Dictionary<Tuple<char, char>, int> bigramCounts = new Dictionary<Tuple<char, char>, int>();

        Dictionary<char, int> onegramCounts = new Dictionary<char, int>();

        calculateProbabilities(onegramCounts, bigramCounts, trigramCounts);

        double totalTrigrams = (double)trigramCounts.Values.Sum();
        double totalBigrams = (double)bigramCounts.Values.Sum();
        double totalOnegrams = (double)onegramCounts.Values.Sum();

        SortedList<double, string> randomWordsScores = new SortedList<double, string>();

        while( randomWordsScores.Count < 100 )
        {
            string randStr = getRandomWord();

            if (!randomWordsScores.ContainsValue(randStr))
            {
                double score = getLikelyhood(randStr,trigramCounts, bigramCounts, onegramCounts, totalTrigrams, totalBigrams, totalOnegrams);

                if (score > SCORE_LIMIT)
                {
                    randomWordsScores.Add(score, randStr);
                }
            }
        }


        //Right now randomWordsScores contains 100 random words which have 
        //a better score than the SCORE_LIMIT, sorted from worst to best.
    }


    /// <summary>
    /// Generates a random 5-letter word
    /// </summary>
    public static string getRandomWord()
    {
        char c0 = (char)rand.Next(65, 90);
        char c1 = (char)rand.Next(65, 90);
        char c2 = (char)rand.Next(65, 90);
        char c3 = (char)rand.Next(65, 90);
        char c4 = (char)rand.Next(65, 90);

        return "" + c0 + c1 + c2 + c3 + c4;
    }

    /// <summary>
    /// Returns a score for how likely a given word is, based on given trigrams, bigrams, and one-grams
    /// </summary>
    public static double getLikelyhood(string wordToScore, Dictionary<Tuple<char, char,char>, int> trigramCounts, Dictionary<Tuple<char, char>, int> bigramCounts, Dictionary<char, int> onegramCounts, double totalTrigrams, double totalBigrams, double totalOnegrams)
    {
        wordToScore = wordToScore.ToUpper();

        char[] letters = wordToScore.ToCharArray();

        Tuple<char, char>[] bigrams = new Tuple<char, char>[]{ 

            new Tuple<char,char>( wordToScore[0], wordToScore[1] ),
            new Tuple<char,char>( wordToScore[1], wordToScore[2] ),
            new Tuple<char,char>( wordToScore[2], wordToScore[3] ),
            new Tuple<char,char>( wordToScore[3], wordToScore[4] )

        };

        Tuple<char, char, char>[] trigrams = new Tuple<char, char, char>[]{ 

            new Tuple<char,char,char>( wordToScore[0], wordToScore[1], wordToScore[2] ),
            new Tuple<char,char,char>( wordToScore[1], wordToScore[2], wordToScore[3] ),
            new Tuple<char,char,char>( wordToScore[2], wordToScore[3], wordToScore[4] ),


        };

        double score = 0;

        foreach (char c in letters)
        {
            score += Math.Log((((double)onegramCounts[c]) / totalOnegrams));
        }

        foreach (Tuple<char, char> pair in bigrams)
        {
            score += Math.Log((((double)bigramCounts[pair]) / totalBigrams));
        }

        foreach (Tuple<char, char, char> trio in trigrams)
        {
            score += 5.0*Math.Log((((double)trigramCounts[trio]) / totalTrigrams));
        }


        return score;
    }

    /// <summary>
    /// Build the probability tables based on the dataset (WordList)
    /// </summary>
    public static void calculateProbabilities(Dictionary<char, int> onegramCounts, Dictionary<Tuple<char, char>, int> bigramCounts, Dictionary<Tuple<char, char, char>, int> trigramCounts)
    {
        foreach (char c1 in alphabet)
        {
            foreach (char c2 in alphabet)
            {
                foreach( char c3 in alphabet)
                {
                    trigramCounts[new Tuple<char, char, char>(c1, c2, c3)] = 1;
                }
            }
        }

        foreach( char c1 in alphabet)
        {
            foreach( char c2 in alphabet)
            {
                bigramCounts[ new Tuple<char,char>(c1,c2) ] = 1;
            }
        }

        foreach (char c1 in alphabet)
        {
            onegramCounts[c1] = 1;
        }


        foreach (string word in wordList)
        {
            for (int pos = 0; pos < 3; pos++)
            {
                trigramCounts[new Tuple<char, char, char>(word[pos], word[pos + 1], word[pos + 2])]++;
            }

            for (int pos = 0; pos < 4; pos++)
            {
                bigramCounts[new Tuple<char, char>(word[pos], word[pos + 1])]++;
            }

            for (int pos = 0; pos < 5; pos++)
            {
                onegramCounts[word[pos]]++;
            }
        }
    }

    /// <summary>
    /// Get the dataset (WordList) from file.
    /// </summary>
    public static List<string> loadWordList()
    {
        string filePath = "WordList.txt";

        string text = File.ReadAllText(filePath);

        List<string> result = text.Split(' ').ToList();

        return result;
    }
}

}
Run Code Online (Sandbox Code Playgroud)

在我的例子中,我将三元组概率缩放5.

我还在所有计数中加一,所以我们不会乘以零.

最后的笔记

我不是一个php程序员,但这个技术很容易实现.

使用一些缩放因子,尝试不同的数据集,或添加一些其他检查,如上面建议的那样.