Hel*_*ish 11 python interpolation spline cubic
我编写了以下代码来执行样条插值:
import numpy as np
import scipy as sp
x1 = [1., 0.88, 0.67, 0.50, 0.35, 0.27, 0.18, 0.11, 0.08, 0.04, 0.04, 0.02]
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]
x = np.array(x1)
y = np.array(y1)
new_length = 25
new_x = np.linspace(x.min(), x.max(), new_length)
new_y = sp.interpolate.interp1d(x, y, kind='cubic')(new_x)
Run Code Online (Sandbox Code Playgroud)
但我得到了:
ValueError: A value in x_new is below the interpolation range.
Run Code Online (Sandbox Code Playgroud)
在 interpolate.py
任何帮助,将不胜感激.
cif*_*key 13
从scipy.interpolate.interp1d上的scipy文档:
scipy.interpolate.interp1d(x,y,kind ='linear',axis = -1,copy = True,bounds_error = True,fill_value = np.nan)
x:array_like.单调递增实数值的一维数组.
...
问题是x值不是单调增加的.事实上,它们是单调递减的.让我知道这是否有效,如果它仍然是你正在寻找的计算:
import numpy as np
import scipy as sp
from scipy.interpolate import interp1d
x1 = sorted([1., 0.88, 0.67, 0.50, 0.35, 0.27, 0.18, 0.11, 0.08, 0.04, 0.04, 0.02])
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]
new_length = 25
new_x = np.linspace(x.min(), x.max(), new_length)
new_y = sp.interpolate.interp1d(x, y, kind='cubic')(new_x)
Run Code Online (Sandbox Code Playgroud)
Mar*_*oma 11
您可以通过以下方式获得此信息:
import numpy as np
import scipy as sp
from scipy.interpolate import interp1d
x1 = [1., 0.88, 0.67, 0.50, 0.35, 0.27, 0.18, 0.11, 0.08, 0.04, 0.04, 0.02]
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]
# Combine lists into list of tuples
points = zip(x1, y1)
# Sort list of tuples by x-value
points = sorted(points, key=lambda point: point[0])
# Split list of tuples into two list of x values any y values
x1, y1 = zip(*points)
new_length = 25
new_x = np.linspace(min(x1), max(x1), new_length)
new_y = sp.interpolate.interp1d(x1, y1, kind='cubic')(new_x)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
56643 次 |
| 最近记录: |