use*_*199 10 r sum unique data.table
我在R中有一个非常大的数据框,并希望在其他列中为每个不同的值加上两列,例如,我们在一天内有各种商店的交易数据框的数据,如下所示
shop <- data.frame('shop_id' = c(1, 1, 1, 2, 3, 3),
'shop_name' = c('Shop A', 'Shop A', 'Shop A', 'Shop B', 'Shop C', 'Shop C'),
'city' = c('London', 'London', 'London', 'Cardiff', 'Dublin', 'Dublin'),
'sale' = c(12, 5, 9, 15, 10, 18),
'profit' = c(3, 1, 3, 6, 5, 9))
Run Code Online (Sandbox Code Playgroud)
这是:
shop_id shop_name city sale profit
1 Shop A London 12 3
1 Shop A London 5 1
1 Shop A London 9 3
2 Shop B Cardiff 15 6
3 Shop C Dublin 10 5
3 Shop C Dublin 18 9
Run Code Online (Sandbox Code Playgroud)
而且我想总结每家商店的销售和利润:
shop_id shop_name city sale profit
1 Shop A London 26 7
2 Shop B Cardiff 15 6
3 Shop C Dublin 28 14
Run Code Online (Sandbox Code Playgroud)
我目前正在使用以下代码执行此操作:
shop_day <-ddply(shop, "shop_id", transform, sale=sum(sale), profit=sum(profit))
shop_day <- subset(shop_day, !duplicated(shop_id))
Run Code Online (Sandbox Code Playgroud)
哪个工作绝对正常,但正如我所说的我的数据帧很大(140,000行,37列和近100,000个唯一的行,我想总结)和我的代码需要很长时间才能运行,然后最终说它已经耗尽了内存.
有谁知道最有效的方法来做到这一点.
提前致谢!
Jus*_*tin 15
**强制性数据表答案**
> library(data.table)
data.table 1.8.0 For help type: help("data.table")
> shop.dt <- data.table(shop)
> shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id']
shop_id sale profit
[1,] 1 26 7
[2,] 2 15 6
[3,] 3 28 14
>
Run Code Online (Sandbox Code Playgroud)
在事情变得更大之前,这听起来不错
shop <- data.frame(shop_id = letters[1:10], profit=rnorm(1e7), sale=rnorm(1e7))
shop.dt <- data.table(shop)
> system.time(ddply(shop, .(shop_id), summarise, sale=sum(sale), profit=sum(profit)))
user system elapsed
4.156 1.324 5.514
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.728 0.108 0.840
>
Run Code Online (Sandbox Code Playgroud)
如果使用键创建data.table,则会获得额外的速度提升:
shop.dt <- data.table(shop, key='shop_id')
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.252 0.084 0.336
>
Run Code Online (Sandbox Code Playgroud)
我认为最好的方法是dplyr
library(dplyr)
shop %>%
group_by(shop_id, shop_name, city) %>%
summarise_all(sum)
Run Code Online (Sandbox Code Playgroud)