Hug*_*une 5 language-agnostic algorithm geometry 2d angle
给定同一圆的两个圆弧段:A = [a1,a2],B = [b1,b2],其中:
如何确定这两个圆弧段是否重叠?(即如果它们相交或触摸至少一个点)
例子:
A=[ -45°, 45°]; B=[ 10°, 20°] ==> overlap
A=[ -45°, 45°]; B=[ 90°, 180°] ==> no overlap
A=[ -45°, 45°]; B=[ 180°, 360°] ==> overlap
A=[ -405°, -315°]; B=[ 180°, 360°] ==> overlap
A=[-3600°, -3601°]; B=[ 3601°, 3602°] ==> overlap (touching counts as overlap)
A=[ 3600°, 3601°]; B=[-3601°,-3602°] ==> overlap (touching counts as overlap)
A=[ -1°, 1°]; B=[ 3602°, 3603°] ==> no overlap
Run Code Online (Sandbox Code Playgroud)
这看起来像一个看似简单的问题,但我无法绕过它.我目前有一个基本的想法,一个解决方案,如果它跨越0°分裂每个部分,但我不确定是否涵盖所有情况,我想知道是否有一个优雅的公式.
ElK*_*ina 10
正如@admaoldak所提到的,首先将度数标准化:
a1_norm = a1 % 360
a2_norm = a2 % 360
b1_norm = b1 % 360
b2_norm = b2 % 360
Run Code Online (Sandbox Code Playgroud)
现在检查b1是否在(a1,a2)之内,
def intersect(b, as, ae
Intersect = False
If as > ae:
if b >= as or b <= ae:
return True
Else:
if b>=as and b<=ae:
return True
return False
Run Code Online (Sandbox Code Playgroud)
最后的答案是:
intersect(b1_norm,a1_norm,a2_norm)||intersect(b2_norm,a1_norm,a2_norm)||
intersect(a1_norm,b1_norm,b2_norm)||intersect(a2_norm,b1_norm,b2_norm)
Run Code Online (Sandbox Code Playgroud)