我需要创建一个对象来计算和存储过去两年中每年每个月的网格中14个节点的3组电价(峰值,非峰值和日平均值).我认为嵌入式列表数据结构是合适的(如果这不是最优的,请纠正我).
在任何情况下,我都不喜欢使用for循环来创建这个结构.如果有一种优雅的方式来做到这一点,我将不胜感激,如果有人可以帮助引导我朝着正确的方向前进.我正在努力练习和改进我的编码.谢谢.
hb_lz_names <- c("HB_BUSAVG", "HB_HOUSTON", "HB_HUBAVG", "HB_NORTH", "HB_SOUTH",
"HB_WEST", "LZ_AEN", "LZ_CPS", "LZ_HOUSTON", "LZ_LCRA", "LZ_NORTH",
"LZ_RAYBN", "LZ_SOUTH", "LZ_WEST")
power_price <- list()
for (i in 1:2){
power_price[[i]] <- list()
for (j in 1:12){
power_price[[i]][[j]] <- list()
for (k in 1:NROW(hb_lz_names)) {
power_price[[i]][[j]][[k]] <- list()
for (l in 1:3){
power_price[[i]][[j]][[k]][[l]] <- l
}
names(power_price[[i]][[j]][[k]]) <- c("on-peak", "off-peak", "average")
}
names(power_price[[i]][[j]]) <- hb_lz_names
}
names(power_price[[i]]) <- c("jan", "feb", "mar", "apr", "may", "jun", "jul", "aug",
"sep", "oct", "nov", "dec")
}
names(power_price) <- c("2011", "2012")
Run Code Online (Sandbox Code Playgroud)
我认为,对于一个经常这样设置(不是衣衫褴褛)的数据你会多更好使用数组:
period_names <- c("on-peak", "off-peak", "average")
hb_lz_names <- c("HB_BUSAVG", "HB_HOUSTON", "HB_HUBAVG", "HB_NORTH", "HB_SOUTH",
"HB_WEST", "LZ_AEN", "LZ_CPS", "LZ_HOUSTON", "LZ_LCRA", "LZ_NORTH",
"LZ_RAYBN", "LZ_SOUTH", "LZ_WEST")
yrs <- 2011:2012
power.price <- array(1,dim=c(2,12,length(hb_lz_names),length(period_names)))
dimnames(power.price) <- list(year=yrs,month=month.abb,node=hb_lz_names,
period=period_names)
Run Code Online (Sandbox Code Playgroud)
(给名字的元素在dimnames
试图记住阵列结构可以是一个很大的帮助......名单- -即命名您的维度)
然后,您可以使用apply
和转换为长格式(用于ggplot
图形或统计分析)轻松计算相应边距的平均值(或其他汇总统计数据)reshape2::melt
...根据我的经验,深度嵌套列表是一个痛苦的对接.