线性回归和R中的分组

JD *_*ong 88 regression r linear-regression lm

我想使用lm()函数在R中进行线性回归.我的数据是一年一度的时间序列,一年(22年),另一个州(50个州).我想为每个状态拟合一个回归,以便最后我有一个lm响应的向量.我可以想象为每个状态做循环然后在循环内进行回归并将每个回归的结果添加到向量.但是,这似乎不像R一样.在SAS中我会做一个'by'语句,在SQL中我会做'group by'.R的做法是什么?

had*_*ley 57

这是使用plyr包的方法:

d <- data.frame(
  state = rep(c('NY', 'CA'), 10),
  year = rep(1:10, 2),
  response= rnorm(20)
)

library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df) 
  lm(response ~ year, data = df))

# Apply coef to each model and return a data frame
ldply(models, coef)

# Print the summary of each model
l_ply(models, summary, .print = TRUE)
Run Code Online (Sandbox Code Playgroud)


ars*_*ars 45

这是使用lme4包的一种方式.

 library(lme4)
 d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                 year=rep(1:10, 2),
                 response=c(rnorm(10), rnorm(10)))

 xyplot(response ~ year, groups=state, data=d, type='l')

 fits <- lmList(response ~ year | state, data=d)
 fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
   (Intercept)        year
CA -1.34420990  0.17139963
NY  0.00196176 -0.01852429

Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316
Run Code Online (Sandbox Code Playgroud)

  • @ToToRo在这里你可以找到一个有效的解决方案(迟到总比没有好):Your.df [,summary(lm(Y~X))$ r.squared,by = Your.factor]其中:Y,X和Your.factor是你的变数.请记住,Your.df必须是data.table类 (3认同)
  • 有没有办法为这两个模型列出 R2?例如,在一年后添加一个 R2 列。还要为每个系数添加 p 值? (2认同)

Pau*_*tra 44

自2009年以来,dplyr已经发布,实际上提供了一种非常好的方式来进行这种分组,非常类似于SAS所做的.

library(dplyr)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                year=rep(1:10, 2),
                response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
#    state   model
#   (fctr)   (chr)
# 1     CA <S3:lm>
# 2     NY <S3:lm>
fitted_models$model
# [[1]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.06354      0.02677  
#
#
# [[2]]
# 
# Call:
# lm(formula = response ~ year, data = .)
# 
# Coefficients:
# (Intercept)         year  
#    -0.35136      0.09385  
Run Code Online (Sandbox Code Playgroud)

要检索系数和Rsquared/p.value,可以使用该broom包.该套餐提供:

三个S3泛型:整洁,它总结了模型的统计结果,如回归系数; augment,它为原始数据添加了列,例如预测,残差和集群分配; 和glance,它提供了模型级统计的一行摘要.

library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
# 
#    state        term    estimate  std.error  statistic   p.value
#   (fctr)       (chr)       (dbl)      (dbl)      (dbl)     (dbl)
# 1     CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2     CA        year  0.02677048 0.13515755  0.1980687 0.8479318
# 3     NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4     NY        year  0.09385309 0.09686043  0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
# 
#    state   r.squared adj.r.squared     sigma statistic   p.value    df
#   (fctr)       (dbl)         (dbl)     (dbl)     (dbl)     (dbl) (int)
# 1     CA 0.004879969  -0.119510035 1.2276294 0.0392312 0.8479318     2
# 2     NY 0.105032068  -0.006838924 0.8797785 0.9388678 0.3609470     2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
#   df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
# 
#     state   response  year      .fitted   .se.fit     .resid      .hat
#    (fctr)      (dbl) (int)        (dbl)     (dbl)      (dbl)     (dbl)
# 1      CA  0.4547765     1 -0.036769875 0.7215439  0.4915464 0.3454545
# 2      CA  0.1217003     2 -0.009999399 0.6119518  0.1316997 0.2484848
# 3      CA -0.6153836     3  0.016771076 0.5146646 -0.6321546 0.1757576
# 4      CA -0.9978060     4  0.043541551 0.4379605 -1.0413476 0.1272727
# 5      CA  2.1385614     5  0.070312027 0.3940486  2.0682494 0.1030303
# 6      CA -0.3924598     6  0.097082502 0.3940486 -0.4895423 0.1030303
# 7      CA -0.5918738     7  0.123852977 0.4379605 -0.7157268 0.1272727
# 8      CA  0.4671346     8  0.150623453 0.5146646  0.3165112 0.1757576
# 9      CA -1.4958726     9  0.177393928 0.6119518 -1.6732666 0.2484848
# 10     CA  1.7481956    10  0.204164404 0.7215439  1.5440312 0.3454545
# 11     NY -0.6285230     1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12     NY  1.0566099     2 -0.163651479 0.4385542  1.2202614 0.2484848
# 13     NY -0.5274693     3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14     NY  0.6097983     4  0.024054706 0.3138637  0.5857436 0.1272727
# 15     NY -1.5511940     5  0.117907799 0.2823942 -1.6691018 0.1030303
# 16     NY  0.7440243     6  0.211760892 0.2823942  0.5322634 0.1030303
# 17     NY  0.1054719     7  0.305613984 0.3138637 -0.2001421 0.1272727
# 18     NY  0.7513057     8  0.399467077 0.3688335  0.3518387 0.1757576
# 19     NY -0.1271655     9  0.493320170 0.4385542 -0.6204857 0.2484848
# 20     NY  1.2154852    10  0.587173262 0.5170932  0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)
Run Code Online (Sandbox Code Playgroud)

  • 现在(dplyr 1.0.4,tidyverse 1.3.0),你可以这样做: `library(broom); 库(tidyverse) d %&gt;% 嵌套(数据 = -状态) %&gt;% 变异(模型 = 地图(数据, ~lm(响应~年份, 数据 = .)), tidied = 地图(模型, 整洁)) %&gt; % 解除嵌套(整理)` (11认同)
  • @pedram 和 @holastello,这不再有效,至少对于 R 3.6.1、broom_0.7.0、dplyr_0.8.3 来说是这样。`d %&gt;% group_by(state) %&gt;% do(model=lm(response ~year, data = .)) %&gt;% rowwise() %&gt;% tidy(model) var 中的错误(if (is.vector( x) || is.factor(x)) x else as.double(x), na.rm = na.rm) :对因子 x 调用 var(x) 已失效。使用“all(duplicated(x)[-1L])”之类的东西来测试常数向量。另外: 警告消息: 1:数据框整理器已弃用,并将在即将发布的 broom 版本中删除。...` (7认同)
  • 我不得不做`rowwise(fitted_models)%>%tidy(model)`让扫帚包工作,但除此之外,很好的答案. (2认同)
  • 效果很好...可以在不离开管道的情况下完成所有操作:`d%>%group_by(state)%>%do(model = lm(response~ year,data =.))%>%rowwise()%>%整齐(模型)` (2认同)

Thi*_*rry 23

在我看来,混合线性模型是这类数据的更好方法.以下代码给出了固定效应的整体趋势.随机效应表明每个州的趋势与全球趋势有何不同.相关结构考虑了时间自相关.看看Pinheiro&Bates(S和S-Plus中的混合效果模型).

library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))
Run Code Online (Sandbox Code Playgroud)

  • 应该通过模型验证(以及数据知识)来检查假设.顺便说一句,你不能保证个人lm的假设.您必须单独验证所有模型. (7认同)
  • 这是一个非常好的一般统计理论答案,让我思考一些我没有考虑过的事情.导致我提出问题的申请不适用于这个解决方案,但我很高兴你提出这个问题.谢谢. (3认同)

Fra*_*Nut 13

使用一个很好的解决方案data.table张贴在这里通过@Zach交叉验证.我只想补充一点,也可以迭代获得回归系数r ^ 2:

## make fake data
    library(data.table)
    set.seed(1)
    dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))

##calculate the regression coefficient r^2
    dat[,summary(lm(y~x))$r.squared,by=grp]
       grp         V1
    1:   1 0.01465726
    2:   2 0.02256595
Run Code Online (Sandbox Code Playgroud)

以及来自的所有其他输出summary(lm):

dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
   grp         r2        f
1:   1 0.01465726 0.714014
2:   2 0.02256595 1.108173
Run Code Online (Sandbox Code Playgroud)


Edu*_*oni 8

## make fake data
 ngroups <- 2
 group <- 1:ngroups
 nobs <- 100
 dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
 head(dta)
#--------------------
  group          y         x
1     1  0.6482007 0.5429575
2     1 -0.4637118 0.7052843
3     1 -0.5129840 0.7312955
4     1 -0.6612649 0.9028034
5     1 -0.5197448 0.1661308
6     1  0.4240346 0.8944253
#------------ 
## function to extract the results of one model
 foo <- function(z) {
   ## coef and se in a data frame
   mr <- data.frame(coef(summary(lm(y~x,data=z))))
   ## put row names (predictors/indep variables)
   mr$predictor <- rownames(mr)
   mr
 }
 ## see that it works
 foo(subset(dta,group==1))
#=========
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
#----------
## one option: use command by
 res <- by(dta,dta$group,foo)
 res
#=========
dta$group: 1
              Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
------------------------------------------------------------ 
dta$group: 2
               Estimate Std..Error    t.value  Pr...t..   predictor
(Intercept) -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
x            0.06286456  0.3020321  0.2081387 0.8355526           x

## using package plyr is better
 library(plyr)
 res <- ddply(dta,"group",foo)
 res
#----------
  group    Estimate Std..Error    t.value  Pr...t..   predictor
1     1  0.21764767  0.1919140  1.1340897 0.2595235 (Intercept)
2     1 -0.36698898  0.3321875 -1.1047647 0.2719666           x
3     2 -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
4     2  0.06286456  0.3020321  0.2081387 0.8355526           x
Run Code Online (Sandbox Code Playgroud)


小智 6

我现在的答案有点迟了,但我正在寻找类似的功能.看起来R中的内置函数'by'也可以轻松地进行分组:

?by包含以下示例,该示例适合每个组并使用sapply提取系数:

require(stats)
## now suppose we want to extract the coefficients by group 
tmp <- with(warpbreaks,
            by(warpbreaks, tension,
               function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)
Run Code Online (Sandbox Code Playgroud)


ngm*_*ngm 6

我认为值得purrr::map为该问题添加方法。

library(tidyverse)

d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
                                 year=rep(1:10, 2),
                                 response=c(rnorm(10), rnorm(10)))

d %>% 
  group_by(state) %>% 
  nest() %>% 
  mutate(model = map(data, ~lm(response ~ year, data = .)))
Run Code Online (Sandbox Code Playgroud)

有关将broom软件包与这些结果结合使用的更多想法,请参见@Paul Hiemstra的答案。


小智 5

lm()上面的函数是一个简单的例子。顺便说一句,我想您的数据库具有以下形式的列:

年份状态 var1 var2 y...

在我看来,您可以使用以下代码:

require(base) 
library(base) 
attach(data) # data = your data base
             #state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)
Run Code Online (Sandbox Code Playgroud)