Vin*_*ent 5 matlab cluster-analysis weka
我在这里搜索并用谷歌搜索,但没有结果。在 Weka 中进行聚类时,有一个方便的选项,即类到聚类,它将算法生成的聚类(例如简单的 k 均值)与您作为类属性提供的“基本事实”类标签相匹配。这样我们就可以看到聚类准确率(错误百分比)。
现在,我如何在Matlab中实现这一点,即将我的clusterClasses向量eg转换[1, 1, 2, 1, 3, 2, 3, 1, 1, 1]为与提供的地面真实标签向量eg相同的索引[2, 2, 2, 3, 1, 3]?
我认为它可能是基于聚类中心和标签中心,但我不知道如何实现!
任何帮助将不胜感激。
文森特
几个月前,我在进行聚类时偶然发现了类似的问题。我没有很长时间地搜索内置解决方案(尽管我确信它们一定存在),最终编写了我自己的小脚本,以将我找到的标签与事实真相进行最佳匹配。该代码非常粗糙,但它应该可以帮助您入门。
它基于尝试所有可能的标签重新排列,以查看最适合真相向量的内容。yte = [3 3 2 1]这意味着,给定具有真实值的聚类结果y = [1 1 2 3],脚本将尝试匹配[3 3 2 1], [3 3 1 2], [2 2 3 1], [2 2 1 3], [1 1 2 3] and [1 1 3 2]以y找到最佳匹配。
这是基于使用内置脚本perms()无法处理超过 10 个独特的集群。对于 7-10 个独特的簇,代码也可能会很慢,因为复杂性会随着阶乘的增长而增长。
function [accuracy, true_labels, CM] = calculateAccuracy(yte, y)
%# Function for calculating clustering accuray and matching found
%# labels with true labels. Assumes yte and y both are Nx1 vectors with
%# clustering labels. Does not support fuzzy clustering.
%#
%# Algorithm is based on trying out all reorderings of cluster labels,
%# e.g. if yte = [1 2 2], try [1 2 2] and [2 1 1] so see witch fit
%# the truth vector the best. Since this approach makes use of perms(),
%# the code will not run for unique(yte) greater than 10, and it will slow
%# down significantly for number of clusters greater than 7.
%#
%# Input:
%# yte - result from clustering (y-test)
%# y - truth vector
%#
%# Output:
%# accuracy - Overall accuracy for entire clustering (OA). For
%# overall error, use OE = 1 - OA.
%# true_labels - Vector giving the label rearangement witch best
%# match the truth vector (y).
%# CM - Confusion matrix. If unique(yte) = 4, produce a
%# 4x4 matrix of the number of different errors and
%# correct clusterings done.
N = length(y);
cluster_names = unique(yte);
accuracy = 0;
maxInd = 1;
perm = perms(unique(y));
[pN pM] = size(perm);
true_labels = y;
for i=1:pN
flipped_labels = zeros(1,N);
for cl = 1 : pM
flipped_labels(yte==cluster_names(cl)) = perm(i,cl);
end
testAcc = sum(flipped_labels == y')/N;
if testAcc > accuracy
accuracy = testAcc;
maxInd = i;
true_labels = flipped_labels;
end
end
CM = zeros(pM,pM);
for rc = 1 : pM
for cc = 1 : pM
CM(rc,cc) = sum( ((y'==rc) .* (true_labels==cc)) );
end
end
Run Code Online (Sandbox Code Playgroud)
例子:
[acc newLabels CM] = calculateAccuracy([3 2 2 1 2 3]',[1 2 2 3 3 3]')
acc =
0.6667
newLabels =
1 2 2 3 2 1
CM =
1 0 0
0 2 0
1 1 1
Run Code Online (Sandbox Code Playgroud)